John Perry

Repetition means Loops

Looping in a collection

Looping on a collection

A useful tricl w/loops

Summary

MAT 305: Mathematical Computing Repeating a task on a set (or list, or tuple, or...)

John Perry

University of Southern Mississippi

Fall 2013

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

▲□▶▲□▶▲□▶▲□▶ □ のQ@

MAT 305: Mathematical Computing

John Perry

- Repetition means Loops
- Looping in a collection
- Looping on a collection
- A useful tric w/loops
- Summary

- 1 Repetition means Loops
- **2** Looping in a collection
- 3 Looping on a collection
- 4 A useful trick w/loops
- **5** Summary

Outline

MAT 305: Mathematical Computing

John Perry

Repetition means Loops

- Looping in a collection
- Looping on a collection
- A useful tricl w/loops
- Summary

1 Repetition means Loops

- **2** Looping in a collection
- **3** Looping on a collection
- A useful trick w/loops
- **5** Summary

Repetition?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Repetition means Loops

MAT 305: Mathematical

Computing John Perry

Looping in a collection

Looping on a collection

A useful trick w/loops

Summary

We often have to repeat a computation that is

- not a mere operation, and
- not convenient to do by hand.

Example

• Compute the first 100 derivatives of f(x).

A difficulty

▲□▶▲□▶▲□▶▲□▶ □ のQ@

John Perry Repetition means Loops

MAT 305: Mathematical

Computing

Looping in a collection

Looping on a collection

A useful trick w/loops

Summary

We may not know *how* many computations ahead of time! Examples

- Add the first *n* numbers
 - What is *n*?
- Determine whether all elements of the set S are prime
 - What is in S?

John Perry

Repetition means Loops

Looping in a collection

Looping on a collection

A useful tricl w/loops

Summary

Solution: loops!

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• loop: a sequence of statements that is repeated

big time bug: infinite loops

John Perry

Repetition means Loops

Looping in a collection

Looping on a collection

A useful tricl w/loops

Summary

Solution: loops!

• loop: a sequence of statements that is repeated

big time bug: infinite loops

"infinite loop"? see infinite loop

- AmigaDOS manual, ca. 1993

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Why loops?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Repetition means Loops

MAT 305: Mathematical

Computing John Perry

Looping in a collection

Looping on a collection

A useful trick w/loops

Summary

- avoid retyping code
 - many patterns repeated
 - same behavior, different data
- may not know number of repetitions when programming

MAT 305: Mathematical Computing John Perry

The for command

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Repetition means Loops

Looping in a collection

Looping on a collection

A useful tricl w/loops

Summary

for *c* in *C* where

- *c* is an identifier
- *C* is an "iterable collection" (tuples, lists, sets)

John Perry

Repetition means Loops

Looping in a collection

Looping on a collection

A useful tric w/loops

Summary

1 Repetition means Loops

2 Looping in a collection

3 Looping on a collection

• A useful trick w/loops

5 Summary

Outline

イロト イ理ト イヨト イヨト

3

MAT 305: Mathematical Computing John Perry

What does it do?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Repetition means Loops

Looping in a collection

Looping on a collection

A useful tricł w/loops

Summary

[statement for c in C]

- suppose C has n elements
- statement is repeated (looped) n times
- on *i*th loop, *c* has the value of *i*th element of *C*

Examples

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Mathematical Computing John Perry

MAT 305-

Repetition means Loops

Looping in a collection

Looping on a collection

A useful trick w/loops

Summary

Example (Trivial)

sage: [cos(pi*t) for t in [1, 2, 3, 4]]
[-1, 1, -1, 1]

Example (Not quite so trivial)

```
Sampling f(x) = x^2 with 10 points on [2,5]
sage: f(x) = x**2
sage: delta_x = (5-2)/10
sage: [f(2 + i*delta_x) for i in range(10)]
[4, 529/100, 169/25, 841/100, 256/25, 49/4, 361/25,
```

1681/100, 484/25, 2209/100]

John Perry

Repetition means Loops

Looping in a collection

Looping on a collection

A useful tric w/loops

Summary

What happened?

$$C == range(10) == [0, 1, ..., 9]$$

John Perry

Repetition means Loops

Looping in a collection

Looping on collection

A useful tricl w/loops

Summary

What happened?

$$C == range(10) == [0, 1, ..., 9]$$

loop 1:
$$i \leftarrow 0$$

f(2 + i*delta_x) $\rightsquigarrow 4$

John Perry

Repetition means Loops

Looping on collection

A useful tric w/loops

Summary

What happened?

$$C == range(10) == [0, 1, ..., 9]$$

loop 1: i
$$\leftarrow$$
 0
f(2 + i*delta_x) \rightsquigarrow 4

loop 2: i
$$\leftarrow$$
 1
f(2 + i*delta_x) \rightarrow 529/100

John Perry

Repetition means Loops

Looping in a collection

Looping on collection

A useful tric w/loops

Summary

. . .

What happened?

$$C == range(10) == [0, 1, ..., 9]$$

loop 1: i
$$\leftarrow$$
 0
f(2 + i*delta_x) \rightsquigarrow 4

loop 2: i
$$\leftarrow$$
 1
f(2 + i*delta_x) \rightsquigarrow 529/100

loop 10: i
$$\leftarrow$$
 9
f(2 + i*delta_x) \rightarrow 2209/100

MAT 305: Mathematical Computing John Perry

More detailed example

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Repetition means Loops

Looping in a collection

Looping on a collection

A useful tricl w/loops

Summary

Estimate $\int_0^1 e^{x^2} dx$ using *n* left Riemann sums.

John Perry

Repetition means Loops

Looping in a collection

Looping on a collection

A useful trick w/loops

Summary

Estimate $\int_{0}^{1} e^{x^2} dx$ using *n* left Riemann sums.

• Excellent candidate for definite loop if *n* known from outset.

More detailed example

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Riemann sum: repeated addition: loop!
- *n* can be known to computer *but not to you*

First, prepare pseudocode!

Pseudocode?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Repetition means Loops

MAT 305: Mathematical

Computing John Perry

Looping in a collection

Looping on collection

A useful trick w/loops

Summary

description of activity

- format independent of computer language
- prefer mathematics to programming
 - "*i*th element of L" or " L_i ", not L[i-1]

John Perry

Repetition means Loops

Looping in a collection

Looping on a collection

A useful trick w/loops

Summary

Building pseudocode

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Ask yourself:

- What list do I use to repeat the action(s)?
- What do I have to do in each loop?
 - How do I break the task into pieces?
 - Divide et impera! Divide and conquer!

John Perry

Repetition means Loops

Looping in a collection

Looping on a collection

A useful tricl w/loops

Summary

Pseudocode for definite loop

▲□▶▲□▶▲□▶▲□▶ □ のQ@

statement for $c \in C$

Notice:

• ∈, not in (mathematics, not Python)

John Perry

Repetition means Loops

Looping in a collection

Looping on collection

A useful tric w/loops

Summary

Pseudocode for Riemann sum

- Setup
Let
$$f(x) = e^{x^2}$$

Let $\Delta x = \frac{b-a}{n}$
Let $C = \{1, 2, ..., n\}$ set up $L-$
Let $S = 0$ S mu
Let $X = \{a + (i-1)\Delta x \text{ for } i \in C\}$
Let $I = \sum_{i=1}^{n} f(x_i)\Delta x$

Set up *L*—notice no Pythonese *S* must start at 0 (no sum) x_i is left endpoint

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

John Perry

Repetition means Loops

Looping in a collection

Looping on a collection

A useful tricl w/loops

Summary

translates to Sage as...

sage:	a, b, $n = 0, 1, 10$		
sage:	$f(x) = e^{**(x^{*}2)}$		
sage:	$Delta_x = (b - a)/n$		
sage:	C = range(1,n+1) now use Pythonese		
sage:	$X = [a + (i - 1)*Delta_x \text{ for } i \text{ in } C]$		
sage:	<pre>sum(f(x)*Delta_x for x in X) another way to loop</pre>		
e^(9/10	$00) + e^{(9/25)} + e^{(81/100)} + e^{(36/25)} +$		
e^(9/4)	$+ e^{(81/25)} + e^{(441/100)} + e^{(144/25)} +$		
e^(729/	(100) + 1		
sage:	round(_, 5)		
1.3812606013			

John Perry

Repetition means Loops

Looping in a collection

Looping on a collection

A useful tricl w/loops

Summary

Repetition means Loops

2 Looping in a collection

3 Looping on a collection

• A useful trick w/loops

5 Summary

Outline

▲□▶▲圖▶▲匣▶▲匣▶ 三臣 のへ⊙

John Perry

Repetition means Loops

Looping in a collection

Looping on a collection

A useful tricl w/loops

Summary

for c in C:
 statement1
 statement2

. . .

statement outside loop

- suppose C has n elements
- statement1, statement2, etc. are repeated (looped) n times
- on *i*th loop, *c* has the value of *i*th element of *C*
- if you modify *c*,
 - corresponding element of *C* does *not* change
 - on next loop, *c* takes next element of *C* anyway
- statement outside loop & subsequent not repeated

What does it do?

John Perry

Repetition means Loops

Looping in a collection

Looping on a collection

A useful tricl w/loops

Summary

Trivial example

◆□▶◆舂▶◆≧▶◆≧▶ ≧ のなぐ

Less trivial example

▲ロ▶▲園▶▲ヨ▶▲ヨ▶ ヨ のQ@

Repetition means Loop

MAT 305: Mathematical

Computing John Perry

Looping in a collection

Looping on a collection

A useful tric w/loops

Summary

John Perry

Repetition means Loops

Looping in a collection

Looping on a collection

A useful tricl w/loops

Summary

Less trivial example

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- loop variable can be any valid identifier
- Python programmers often use each

John Perry

Repetition means Loops

Looping in a collection

Looping on a collection

A useful tricl w/loops

Summary

What happened?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$C == [x * * 2, \cos(x), e * * x * \cos(x)]$

John Perry

Repetition means Loops

Looping in a collection

Looping on a collection

A useful tricl w/loops

Summary

What happened?

$$C == [x**2, cos(x), e**x*cos(x)]$$

loop 1: f
$$\leftarrow$$
 x**2
print diff(f) \rightarrow 2x

John Perry

Repetition means Loops

Looping in a collection

Looping on a collection

A useful tric w/loops

Summary

What happened?

$$C == [x**2, cos(x), e**x*cos(x)]$$

loop 1:
$$f \leftarrow x**2$$

print diff(f) $\rightarrow 2x$

$$\begin{array}{rcl} \text{loop 2: } f & \longleftarrow & \cos(x) \\ & & & \text{print diff(f)} & \rightsquigarrow & -\sin(x) \end{array}$$

John Perry

Repetition means Loops

Looping in a collection

Looping on a collection

A useful tricl w/loops

Summary

What happened?

$$C == [x**2, cos(x), e**x*cos(x)]$$

loop 1: f
$$\leftarrow$$
 x**2
print diff(f) \rightsquigarrow 2x

$$\begin{array}{rcl} \operatorname{loop} 2: f & \longleftarrow & \operatorname{cos}(x) \\ & & & \operatorname{print} diff(f) & \rightsquigarrow & -\operatorname{sin}(x) \end{array}$$

loop 3:
$$f \leftarrow e^{xx}\cos(x)$$

print diff(f) $\rightarrow -e^{x}\sin(x) + e^{x}\cos(x)$

John Perry

Repetition means Loops

Looping in a collection

Looping on a collection

A useful tricl w/loops

Summary

sage:	C = [1,3,5]
sage:	for c in C:
	c = c + 1
	print c
2	
4	
6	
sage:	print C
[1, 3,	5]

Changing each ?

John Perry

Repetition means Loop

Looping in a collection

Looping on a collection

A useful tricl w/loops

Summary

C == [1, 2, 3]

What happened?

John Perry

Repetition means Loops

Looping in a collection

Looping on a collection

A useful tricl w/loops

Summary

C == [1,2,3]

loop 1:
$$c \leftarrow 1$$

 $c = c + 1 = 1 + 1$
print $c \rightarrow 2$

What happened?

John Perry

Repetition means Loop

Looping in a collection

Looping on a collection

A useful tric w/loops

Summary

C == [1,2,3]

loop 1:
$$c \leftarrow 1$$

 $c = c + 1 = 1 + 1$
print $c \rightarrow 2$

loop 2:
$$c \leftarrow 2$$

 $c = c + 1 = 2 + 1$
print $c \rightarrow 3$

What happened?

John Perry

Repetition means Loop

Looping in a collection

Looping on a collection

A useful trick w/loops

Summary

C == [1,2,3]

loop 1:
$$c \leftarrow 1$$

 $c = c + 1 = 1 + 1$
print $c \rightarrow 2$

loop 2:
$$c \leftarrow 2$$

 $c = c + 1 = 2 + 1$
print $c \rightarrow 3$
loop 3: $c \leftarrow 3$
 $c = c + 1 = 3 + 1$
print $c \rightarrow 4$

What happened?

John Perry

Repetition means Loops

Looping in a collection

Looping on a collection

A useful tricl w/loops

Summary

Changing C?

(日)

Don't modify C unless you know what you're doing.

John Perry

Repetition means Loops

Looping in a collection

Looping on a collection

A useful trick w/loops

Summary

Don't modify C **unless you know what you're doing**. Usually, you don't.

sage: C = [1,2,3,4]

sage: for c in C: C.append(c+1)

Changing C?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

John Perry

Repetition means Loops

Looping in a collection

Looping on a collection

A useful trick w/loops

Summary

Don't modify *C* unless you know what you're doing. Usually, you don't.

sage: C = [1,2,3,4]

sage: for c in C: C.append(c+1)

... infinite loop!

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Changing C?

John Perry

Repetition means Loop

Looping in a collection

Looping on a collection

A useful tricl w/loops

Summary

More detailed example

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Use **Euler approximation** with 200 points to plot an approximate solution to a differential equation

y' = f(x, y)

starting at the point (1, 1) and ending at x = 4 (we'll define f later)

John Perry

Repetition means Loop

Looping in a collection

Looping on a collection

A useful trick w/loops

Summary

More detailed example

Use **Euler approximation** with 200 points to plot an approximate solution to a differential equation

$$y' = f(x, y)$$

starting at the point (1, 1) and ending at x = 4 (we'll define f later)

Euler approximation?!?

- given a point (x_i, y_i) on the curve,
- the next point $(x_{i+1}, y_{i+1}) \approx (x_i + \Delta x, y_i + y' \cdot \Delta x)$

John Perry

Repetition means Loops

Looping in a collection

Looping on a collection

A useful trick w/loops

Summary

Building pseudocode

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Ask yourself:

- What list(s) do I use to repeat the action(s)?
- What do I have to do in each loop?
 - How do I break the task into pieces?
 - Divide et impera! Divide and conquer!

John Perry

Repetition means Loops

Looping in a collection

Looping on a collection

A useful tricl w/loops

Summary

Pseudocode

◆□ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ● ○ ○ ○

Let
$$x_0, y_0 = (1, 1)$$

Let $a = 1$ and $b = 4$
Let $\Delta x = \frac{b-a}{n}$
Let $C = (1, 2, ..., n)$
for $i \in C$
 $y_i = y_{i-1} + \Delta x \cdot f(x_{i-1}, y_{i-1})$
 $x_i = x_{i-1} + \Delta x$

John Perry

Repetition means Loops

Looping in a collection

Looping on a collection

A useful tricl w/loops

Summary

Translates to sage as...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

sage:	xi,yi = 1,1
sage:	a,b,n = 1,4,200
sage:	$Delta_x = (b-a)/n$
sage:	<pre>for i in range(n):</pre>

yi = yi + Delta_x * f(xi,yi)

xi = xi + Delta_x

Try it!

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のの()

MAT 305: Mathematical Computing

John Perry

Repetition means Loops

Looping in a collection

Looping on a collection

A useful trick w/loops

Summary

sage: f(x,y) = x**2
sage: [repeat the above]
sage: xi, yi
(4, 1751009/80000)
sage: round(yi,5)
21.88761

What happened?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

John Perry

Repetition means Loops

Looping in a collection

Looping on a collection

A useful tric w/loops

Summary

$range(n) \leftarrow [0, \ldots, 199]$

John Perry

Repetition means Loop

Looping in a collection

Looping on a collection

A useful tric w/loops

Summary

range(n) \leftarrow [0, ..., 199] loop 1: $i \leftarrow 0$ yi = yi + Delta_x * f(xi,yi) \rightsquigarrow yi = 1 + .015*1 = 1.015 xi = xi + Delta_x \rightsquigarrow xi = 1 + .015 = 1.015

What happened?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

John Perry

Repetition means Loop

Looping in a collection

Looping on a collection

A useful tricl w/loops

Summary

What happened? $range(n) \leftarrow [0, \ldots, 199]$ loop 1: $i \leftarrow 0$ vi = vi + Delta_x * f(xi,yi) → yi = 1 + .015*1 = 1.015 xi = xi + Delta x → xi = 1 + .015 = 1.015 loop 2: $i \leftarrow 1$ yi = yi + Delta_x * f(xi,yi) → yi = 1.015 + .015*1.030225 = 1.030453375 xi = xi + Delta_x \rightarrow xi = 1.015 + .015 = 1.03

▲□▶▲□▶▲□▶▲□▶ □ のQ@

John Perry

Repetition means Loops

Looping in a collection

Looping on a collection

A useful tricl w/loops

Summary

range(n)
$$\leftarrow$$
 [0, ..., 199]
loop 1: $i \leftarrow 0$
yi = yi + Delta_x * f(xi,yi)
 \rightsquigarrow yi = 1 + .015*1 = 1.015
xi = xi + Delta_x
 \implies xi = 1 + .015 = 1.015
loop 2: $i \leftarrow 1$
yi = yi + Delta_x * f(xi,yi)
 \rightsquigarrow yi = 1.015 + .015*1.030225 = 1.030453375
xi = xi + Delta_x
 \implies xi = 1.015 + .015 = 1.03
loop 3: $i \leftarrow 2$
yi = yi + Delta_x * f(xi,yi)
 \implies yi = 1.03... + .015*1.0609 = 1.046366875
xi = xi + Delta_x
 \implies xi = 1.03 + .015 = 1.045

What happened?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

etc.

John Perry

- Repetition means Loops
- Looping in a collection
- Looping on a collection
- A useful trick w/loops
- Summary

1 Repetition means Loops

- **2** Looping in a collection
- **3** Looping on a collection
- 4 A useful trick w/loops

5 Summary

Outline

イロト イ理ト イヨト イヨト

3

John Perry

Repetition means Loops

Looping in a collection

Looping on a collection

A useful trick w/loops

Summary

Looping through nonexistent lists

- range(n) creates a list of n elements
 - for each in range(n) creates the list before looping

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

- constructing a list, merely to repeat *n* times, is wasteful
 - for each in xrange(n) has same effect
 - slightly faster, uses less computer memory

John Perry

- Repetition means Loops
- Looping in a collection
- Looping on a collection
- A useful tricl w/loops
- Summary

1 Repetition means Loops

- **2** Looping in a collection
- **3** Looping on a collection
- A useful trick w/loops
- **5** Summary

Outline

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

Summary

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

MAT 305: Mathematical Computing

John Perry

- Repetition means Loops
- Looping in a collection
- Looping on a collection
- A useful trick w/loops
- Summary

- definite loop: *n* repetitions known at outset
- collection C of n elements controls loop
 - don't modify *C*
- two forms
 - loop *in* a collection, [*expression* for $c \in C$]
 - loop *on* a collection, for *c* ∈ *C*
 - statement1
 - statement2

. . .

statement outside loop