John Perry

Decisionmaking

Boolean statements

Having said al that...

Summary

MAT 305: Mathematical Computing Decision-making

John Perry

University of Southern Mississippi

Spring 2013

John Perry

Decisionmaking

Boolean statements

Having said all that...

Summary

1 Decision-making

2 Boolean statements

3 Having said all that...

Outline

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

John Perry

Decisionmaking

Boolean statements

Having said all that...

Summary

1 Decision-making

2 Boolean statements

3 Having said all that...

4 Summary

Outline

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

John Perry

Decisionmaking

Boolean statements

Having said all that...

Summary

Decision making?

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

A function may have to act in different ways, depending on the arguments.

John Perry

Decisionmaking

Boolean statements

Having said all that...

Summary

Decision making?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

A function may have to act in different ways, depending on the arguments.

Example

Piecewise functions:

$$f(x) = \begin{cases} f_1(x), & x \in (a_0, a_1) \\ f_2(x), & x \in [a_1, a_2) \end{cases}$$

If $x \in (a_0, a_1)$, then $f(x) = f_1(x)$;
if $x \in [a_1, a_2)$, then $f(x) = f_2(x)$.

John Perry

Decisionmaking

Boolean statements

Having said all that...

Summary

Decision making?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

A function may have to act in different ways, depending on the arguments.

Example

Deciding concavity:

If f''(a) > 0, then f is concave up at x = a; if f''(a) < 0, then f is concave down at x = a.

John Perry

Decisionmaking

Boolean statements

Having said all that...

Summary

if condition : if-statement1 if-statement2 ...

non-if statement1

where

- condition: expression that evaluates to True or False
- condition True? if-statement1, if-statement2, ... performed
 - proceed eventually to non-if statement1
- condition False? if-statement1, if-statement2, ... skipped
 - proceed immediately to non-if statement1

if statements

Example

John Perry

MAT 305: Mathematical

Computing

Decisionmaking

Boolean statements

Having said all that...

Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

John Perry

Decisionmaking

Boolean statements

Having said all that...

Summary

```
if condition:
    if-statement1
    ...
else:
    else-statement1
    ...
```

non-if statement1

where

- condition True? if-statement1, ... performed
 - else-statement1, ... skipped
- condition False? else-statement1, ... performed
 - statement1, ... skipped
- proceed sooner or later to non-if statement1

if-else statements

John Perry

Decisionmaking

Boolean statements

Having said all that...

Summary

if condition1: if-statement1 . . . elif condition2: elif1-statement1 . . . elif condition3: elif2-statement1 else: else-statement1 . . . non-if statement1

if-elif-else statements

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

John Perry

Decisionmaking

Boolean statements

Having said al that...

Summary

Pseudocode for if-elif-else

if condition1 if-statement1

else if condition2 elseif1-statement1

```
else if condition3
elseif2-statement1
...
else
else-statement1
...
```

Notice:

- indentation
- no colons
- else if, not elif

John Perry

Decisionmaking

Boolean statements

Having said all that...

Summary

Example: concavity

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Write a Sage function that tests whether a function f is concave up or down at a given point. Have it return the string 'concave up', 'concave down', or 'neither'.

John Perry

Decisionmaking

Boolean statements

Having said all that...

Summary

Example: concavity

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Write a Sage function that tests whether a function f is concave up or down at a given point. Have it return the string 'concave up', 'concave down', or 'neither'.

Different choices \implies need to decide! \implies if

John Perry

Decisionmaking

Boolean statements

Having said all that...

Summary

Example: concavity

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Write a Sage function that tests whether a function f is concave up or down at a given point. Have it return the string 'concave up', 'concave down', or 'neither'.

Different choices \implies need to decide! \implies if

Start with pseudocode.

- inputs needed?
- output expected?
- what to do?
 - step by step
 - Divide et impera! Divide and conquer!

John Perry

Decisionmaking

Boolean statements

Having said all that...

Summary

Pseudocode for Example

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

algorithm check_concavity inputs

John Perry

Decisionmaking

Boolean statements

Having said all that...

Summary

Pseudocode for Example

▲□▶▲□▶▲□▶▲□▶ □ のQ@

algorithm check_concavity inputs $a \in \mathbb{R}$

f(x), a twice-differentiable function at x = a

outputs

John Perry

Decisionmaking

Boolean statements

Having said all that...

Summary

Pseudocode for Example

▲□▶▲□▶▲□▶▲□▶ □ のQ@

algorithm check_concavity

inputs

 $a \in \mathbb{R}$

f(x), a twice-differentiable function at x = a

outputs

'concave up' if f is concave up at x = a'concave down' if f is concave down at x = a'neither' otherwise

do

John Perry

Decisionmaking

Boolean statements

Having said all that...

Summary

Pseudocode for Example

algorithm check_concavity

inputs

 $a \in \mathbb{R}$

f(x), a twice-differentiable function at x = a

outputs

```
'concave up' if f is concave up at x = a
'concave down' if f is concave down at x = a
'neither' otherwise
```

do

```
if f''(a) > 0
    return 'concave up'
else if f''(a) < 0
    return 'concave down'
else
    return 'neither'</pre>
```

Try it!

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Computing John Perry

MAT 305: Mathematical

Decisionmaking

Boolean statements

Having said al that...

Summary

```
sage: def check_concavity(a, f, x):
    ddf = diff(f, x, 2)
    if ddf(x=a) > 0:
        return 'concave up'
    elif ddf(x=a) < 0:
        return 'concave down'
    else:
        return 'neither'
```

Try it!

Computing John Perry

MAT 305: Mathematical

Decisionmaking

```
Boolean
statements
```

Having said al that...

Summary

```
sage: def check_concavity(a, f, x):
         ddf = diff(f, x, 2)
         if ddf(x=a) > 0:
           return 'concave up'
         elif ddf(x=a) < 0:
           return 'concave down'
         else:
           return 'neither'
sage: check_concavity(3*pi/4, cos(x), x)
'concave up'
     check_concavity(pi/4, cos(x), x)
sage:
'concave down'
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

John Perry

Decisionmaking

Boolean statements

Having said all that...

Summary

Example: piecewise function

Write a function whose input is any $x \in \mathbb{R}$ and whose output is

$$f(x) = \begin{cases} 1 - x^2, & x < 0\\ 0, & x = 0\\ x^2 - 1, & x > 0. \end{cases}$$

John Perry

Decisionmaking

Boolean statements

Having said all that...

Summary

Example: piecewise function

Write a function whose input is any $x \in \mathbb{R}$ and whose output is

$$f(x) = \begin{cases} 1 - x^2, & x < 0\\ 0, & x = 0\\ x^2 - 1, & x > 0. \end{cases}$$

Three different choices \implies need to make a decision! \implies if

John Perry

Decisionmaking

Boolean statements

Having said all that...

Summary

Pseudocode for example

algorithm *piecewise_f* inputs

John Perry

Decisionmaking

Boolean statements

Having said al that...

Summary

algorithm piecewise_f inputs $a \in \mathbb{R}$ outputs

Pseudocode for example

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

John Perry

Decisionmaking

Boolean statements

Having said al that...

Summary

algorithm piecewise finputs $a \in \mathbb{R}$ outputs f(a), where f is defined as above

do

Pseudocode for example

John Perry

Decisionmaking

```
Boolean
statements
```

Having said al that...

Summary

Pseudocode for example

```
algorithm piecewise_f

inputs

a \in \mathbb{R}

outputs

f(a), where f is defined as above

do

if a < 0

return 1 - a^2
```

John Perry

Decisionmaking

```
Boolean
statements
```

Having said al that...

Summary

```
Pseudocode for example
```

```
algorithm piecewise f
inputs
  a \in \mathbb{R}
outputs
  f(a), where f is defined as above
do
  if a < 0
     return 1 - a^2
  else if a = 0
     return 0
```

John Perry

Decisionmaking

Boolean statements

Having said al that...

Summary

```
Pseudocode for example
```

```
algorithm piecewise f
inputs
  a \in \mathbb{R}
outputs
  f(a), where f is defined as above
do
  if a < 0
     return 1 - a^2
  else if a = 0
     return 0
  else
     return a^2 - 1
```

John Perry

Decisionmaking

Boolean statements

Having said al that...

Summary

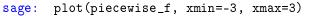
```
sage: def piecewise_f(a):
    if a < 0:
        return 1 - a**2
    elif a == 0:
        return 0
    else:
        return a**2 - 1
sage: piecewise_f(3)
8
```

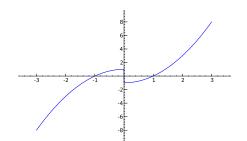
Python code

It gets better

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Computing John Perry


MAT 305: Mathematical


Decisionmaking

Boolean statements

Having said all that...

Summary

John Perry

Decisionmaking

Boolean statements

Having said al that...

Summary

It gets worse, too

▲□▶▲□▶▲□▶▲□▶ □ のQ@

How do we handle a piecewise function defined over more complicated intervals?

Example

Suppose

$$g(x) = \begin{cases} 3x, & x \in [0,2) \\ -\frac{x}{3} + \frac{20}{3}, & x \in [2,20) \\ 0, & x \ge 20. \end{cases}$$

How do we define this in Sage?

John Perry

Decisionmaking

Boolean statements

Having said all that...

Summary

Pseudocode deceptively easy

▲□▶▲□▶▲□▶▲□▶ □ のQ@

algorithm *piecewise* g inputs $a \in [0,\infty)$ outputs g(a), where g is defined as above do if $a \in [0,2)$ return 3a else if $a \in [2, 20)$ return $-\frac{a}{3} + \frac{20}{3}$ else return 0

John Perry

Decisionmaking

Boolean statements

Having said all that...

Summary

Pseudocode deceptively easy

algorithm *piecewise* g inputs $a \in [0,\infty)$ outputs g(a), where g is defined as above do if $a \in [0,2)$ return 3a else if $a \in [2, 20)$ return $-\frac{a}{3} + \frac{20}{3}$ else return 0

... but how does does Sage decide $a \in [x_1, x_2)$?!?

John Perry

Decisionmaking

Boolean statements

Having said all that...

Summary

1 Decision-making

2 Boolean statements

3 Having said all that...

Outline

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

John Perry

Decisionmaking

Boolean statements

Having said al that...

Summary

Boolean algebra

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Boolean algebra operates on only two values: {True,False}. ...or {1,0} if you prefer ...or {Yes, No} if you prefer

John Perry

Decisionmaking

Boolean statements

Having said all that...

Summary

Boolean algebra operates on only two values: {True,False}.

... or {1,0} if you prefer ... or {Yes, No} if you prefer

Basic operations:

• not *x*

- True iff x is False
- *x* and *y*
 - True iff both *x* and *y* are True
- *x* or *y*
 - True iff
 - x is True; or
 - y is True; or
 - both *x* and *y* are True

("inclusive" or)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

MAT 305: Mathematical Computing John Perry		Example: and, or
Decision- making		
Boolean statements Having said all that	sage: True	5 > 4 obvious enough
Summary	sage: False	5 < 4
	sage: True	(5 > 4) or (5 < 4) because at least one is True $(5 > 4)$
	sage: False	(5 > 4) and (5 < 4) because one is False

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

MAT 305: Mathematical Computing John Perry			Example: not			
Decision- making						
Boolean statements Having said all that	sage: False	4 > 4		obvious enough		
Summary	sage: True	not (4 > 4)				
	sage: False	not ((5 > 4	e) or (4 < 5))	we have (not True)		
	sage: True	not (4 == 5	5)	we have (not False)		

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

John Perry

Decisionmaking

Boolean statements

Having said all that...

Summary

Equality and inequalities

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Recall: = and == are not the same
 - x = y assigns value of y to x
 - x == y compares values of x, y, reports True or False

John Perry

Decisionmaking

Boolean statements

Having said al that...

Summary

Equality and inequalities

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Recall: = and == are not the same
 - x = y assigns value of y to x
 - x == y compares values of x, y, reports True or False

For inequalities,

- x != y compares x, y
 - True iff not (x == y)
- x > y, x < y have usual meanings

John Perry

Decisionmaking

Boolean statements

Having said al that...

Summary

Equality and inequalities

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Recall: = and == are not the same
 - x = y assigns value of y to x
 - x == y compares values of x, y, reports True or False

For inequalities,

- x != y compares x, y
 - True iff not (x == y)
- x > y, x < y have usual meanings

•
$$x \ge y$$
? use x >= y

- True iff not (x < y)
- $x \le y$? use x <= y
 - True iff not (x > y)

MAT 305: Mathematical Computing John Perry

Back to the example

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

Decisionmaking

Boolean statements

Having said al that...

Summary

Example Suppose

$g(x) = \begin{cases} 3x, & x \in [0,2) \\ -\frac{x}{3} + \frac{20}{3}, & x \in [2,20) \\ 0, & x \ge 20. \end{cases}$

How do we define this in Sage? Using Boolean algebra, the pseudocode (and Python code) becomes much simpler.

John Perry

Decisionmaking

Boolean statements

Having said al that...

Summary

Pseudocode, again algorithm *piecewise_g*

inputs $a \in [0,\infty)$

outputs

g(a), where g is defined as above do if $a \in [0,2)$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

```
return 3a
else if a \in [2, 20)
return -\frac{a}{3} + \frac{20}{3}
else
return 0
```

John Perry

Decisionmaking

Boolean statements

Having said al that...

Summary

Pseudocode, again

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

inputs $a \in [0,\infty)$ outputs g(a), where g is defined as above do if $a \in [0,2)$ return 3a else if $a \in [2, 20)$ return $-\frac{a}{2} + \frac{20}{3}$ else return 0

algorithm *piecewise* g

... but how does does Sage decide $a \in [x_1, x_2)$?!? use $a \ge x_1$ and $a < x_2$!

Sage code

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Computing John Perry

MAT 305: Mathematical

Decisionmaking

Boolean statements

Having said al that...

Summary

```
sage: def piecewise_g(a):
    if (a >= 0) and (a < 2):
        return 3*a
    elif (a >= 2) and (a < 20):
        return -a/3 + 20/3
    else:
        return 0</pre>
```

Sage code

▲□▶▲□▶▲□▶▲□▶ □ のQ@

John Perry

MAT 305: Mathematical

Computing

Boolean

Having said al that...

Summary

```
sage: def piecewise_g(a):
    if (a >= 0) and (a < 2):
        return 3*a
    elif (a >= 2) and (a < 20):
        return -a/3 + 20/3
    else:
        return 0
```

Much easier to look at.

Voilà!

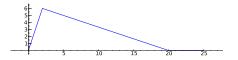
▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Computing John Perry

MAT 305: Mathematical

Decisionmaking

Boolean statements


Having said all that...

Summary

sage:	def	<pre>piecewise_g(a):</pre>	• • •
-------	-----	----------------------------	-------

sage: pgplot = plot(piecewise_g, 0, 25)

sage: show(pgplot, aspect_ratio=1)

John Perry

Decisionmaking

Boolean statements

Having said all that...

Summary

1 Decision-making

2 Boolean statements

3 Having said all that...

4 Summary

Outline

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

John Perry

Decisionmaking

Boolean statements

Having said all that...

Summary

There's an error in the code

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$g(x) = \begin{cases} 3x, & x \in [0,2) \\ -\frac{x}{3} + \frac{20}{3}, & x \in [2,20) \\ 0, & x \ge 20. \end{cases}$$

What if a < 0?

- g(*a*) undefined, but...
- function returns answer!

```
sage: piecewise_g(-1)
0
```

Think about

- cause?
- fix?

John Perry

Decisionmaking

Boolean statements

Having said all that...

Summary

Sage has a piecewise() command...

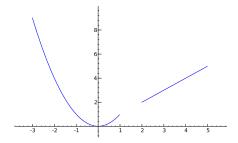
< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

piecewise([[$(a_1, b_1), f_1$], [$(a_2, b_2), f_2$], ...]) where

- $a_i, b_i \in \mathbb{R}$
- f_i describes function on interval (a_i, b_i)

... so it's actually a little easier

that... Summary


Having said all

MAT 305: Mathematical

Computing John Perry

s

s

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

John Perry

Decisionmaking

Boolean statements

Having said all that...

Summary

1 Decision-making

2 Boolean statements

3 Having said all that...

Outline

▲□▶▲圖▶▲匣▶▲匣▶ 三臣 のへ⊙

Summary

▲□▶▲□▶▲□▶▲□▶ □ のQ@

MAT 305: Mathematical Computing

John Perry

- Decisionmaking
- Boolean statements
- Having said al that...
- Summary

- Decision making accomplished via if-elif-else
 - pseudocode: if, else if, else
- Mathematical examples abound!
 - testing properties of functions
 - piecewise functions
- Boolean algebra helps create conditions for if and elif
 - and, or, not
 - <=, !=, >=