MAT 305: Review #6

April 4, 2014

Directions: The usual counsels apply.

Part I Modifying an already-written function

1. In class, we wrote a function, method_of_bisection, that approximates the root of a function to 2 decimal places. Rewrite the function so that it approximates the root of a function to d decimal places, where d is an argument specified by the user.

Part II Functions with definite loops

On a previous assignment, you had to decide whether a given set (the *quaternions*) was a group. This required a lot of calculations that you had to request by hand. This time, you'll use functions and loops, so that you can check this for arbitrary sets and operations.

- 2. Write pseudocode for four algorithms, which will determine whether a finite set S and an operation \otimes satisfy:
 - *closure*, that is, $x \otimes y \in S$ for all $x, y \in S$;
 - *associative*, that is, $x \otimes (y \otimes z) = (x \otimes y) \otimes z$ for all $x, y, z \in S$;
 - *identity*, that is, we can find $\iota \in S$ such that $x\iota = x$ and $\iota x = x$ for all $x \in S$;
 - *inverse*, that is, for any $x \in S$, we can find $y \in S$ such that $xy = yx = \iota$.

Be sure to specify the inputs needed, and remember that pseudocode should look like english with mathematics, not like Python. *You will lose points* for using Python-isms in pseudocode. I will do an example of one property in class, which should make the others easier.

- 3. Implement three of your algorithms as a Sage function. The operation should be used as a function with two inputs x and y; you can use it by invoking set_operation(x,y). I will do an example of one property in class, which should make the others easier.
- 4. Test your answers on each of the following possibilities:
 - (a) S is the quaternions, and \otimes is matrix multiplication.
 - (b) S is the set of integers from 0 to 11, and \otimes is addition, *modulo 12*.
 - (c) S is the set of integers from 0 to 11, and \otimes is multiplication, *modulo 12*.