MAT 305: Review \#5

March 17, 2014

Directions: The usual counsels apply.

1. Create a new worksheet. Set the title to, "Review \#5". Add other information to identify you, as necessary.
2. Select a problem according to the following schema.

If your ID ends with...	\ldots use this function...	\ldots over this interval.
$0,1,2$	$f(x)=\sin x$	$\left[-\frac{\pi}{3}, \frac{2 \pi}{3}\right]$
4,5	$f(x)=\cos x$	$\left[-\frac{\pi}{3}, \frac{2 \pi}{3}\right]$
6,9	$f(x)=\sec x$	$\left[-\frac{\pi}{6}, \frac{\pi}{3}\right]$
other	weird: see me	

Part 1: Derivatives

3. Find the equation of the line tangent to f at $x=\pi / 4$. Any computation that can be done with Sage should be evident in your worksheet!
4. Combine the plots of both f and the line tangent to it over the interval given. The curve for f should be black, and have a width of 2 . The line should be blue, and have a width of 2 .
5. Create an animation with at least 8 frames that shows the approach of the secant line to the tangent line as $x \rightarrow \pi / 4$ from the left. Reuse the plots of f and the tangent line from above. The secant lines should be red, and have a width of 1 . You are free to choose any points you like for the secant, just so long as $x \rightarrow \pi / 4$ from the left. When you are done, your animation should resemble the one on the course syllabus: for instance, the secant line should proceed back and forth, not just in one direction.

Part 2: Exact integrals

6. Compute the area between f and $g(x)=1-x^{2}$ over the interval given.
7. Combine the plots of both f and g over the interval given. Fill in the area between f and g. The curves for both f and g should be black, with a width of 2 . The filling can be any color you like, but make it half-transparent. Add a text label inside the filling which contains the area.

Part 3: Approximate integrals

8. Go back to your Calculus text and review the calculation of arclength with integrals. Write the formula, and in a text cell explain briefly what geometric tool is used to approximate it.
9. Use Sage to approximate the arclength of the ellipse $x^{2} / 4+y^{2} / 9=1$. Limit the approximation to 5 sample points, and round your answer to 5 decimal places.
10. Repeat problem 9, this time limiting the approximation to 10 sample points. What part of the answer indicates that you have a more accurate answer?

Part 4: BONUS! (for those with exceptional time and/or motivation)

Animate approximations of the arclength, where each frame shows

- no axes;
- the ellipse, in black, of width 2;
- $5,6,7, \ldots, 10$ dashed line segments, in red, of width 1 ;
- a text label with the corresponding approximation to the arclength, at the center of the ellipse, in black.

This bonus is worth as much as the entire assignment. If you wish, you may do Part 4 instead of Parts 1-3. Be sure you know what you are doing; this can take a while.

