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Loops?

• loop: a sequence of statements that is repeated

big time bug: infinite loops

“infinite loop”?
see infinite loop

— AmigaDOS manual, ca. 1993
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Why loops?

• like functions: avoid retyping code

• many patterns repeated
• same behavior, different data

• don’t know number of repetitions when programming
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Types of loops

• definite

• number of repetitions known at beginning of loop

• indefinite

• number of repetitions not known at beginning of loop
• number of repetitions unknownable at beginning of

loop

Most languages use different constructions for each
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The for command

for c in C:

statement1
statement2
. . .

where
• c is an identifier
• C is an “iterable collection” (tuples, lists, sets)
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What does it do?

for c in C:

statement1
statement2
. . .
• suppose C has n elements
• statement1, statement2, etc. are repeated (looped) n times
• on ith loop, c has the value of ith element of C
• if you modify c,

• corresponding element of C does not change
• on next loop, c takes next element of C anyway
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Trivial example

sage: for c in [1, 2, 3, 4]:

print c

1

2

3

4
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Less trivial example

sage: for f in [x**2, cos(x), e**x*cos(x)]:

print diff(f)

2*x

-sin(x)

-e^x*sin(x) + e^x*cos(x)

• loop variable can be any valid identifier
• Python programmers often use each
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What happened?

C == [x**2, cos(x), e**x*cos(x)]

loop 1: f ←− x**2

print diff(f)   2x

loop 2: f ←− cos(x)

print diff(f)   -sin(x)

loop 3: f ←− e**x*cos(x)

print diff(f)   -e^x*sin(x) + e^x*cos(x)
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Changing each ?

sage: C = [1,3,5]

sage: for c in C:

c = c + 1

print c

2

4

6

sage: print C

[1, 3, 5]
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What happened?

C == [1,2,3]

loop 1: c ←− 1

c = c + 1 = 1+ 1
print c   2

loop 2: c ←− 2

c = c + 1 = 2+ 1
print c   3

loop 3: c ←− 3

c = c + 1 = 3+ 1
print c   4
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Changing C ?

Don’t modify C unless you know what you’re doing.

Usually, you don’t.

sage: C = [1,2,3,4]

sage: for c in C:

C.append(each+1)

. . . infinite loop!
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More detailed example

Given f (x), a,b ∈R, and n ∈N, estimate
´ b

a f (x) dx using n left
Riemann sums.

• Excellent candidate for definite loop if n known from
outset.

• Riemann sum: repeated addition: loop!
• If n is not known, can still work. . . details later

• Start with pseudocode. . .



MAT 305:
Mathematical
Computing

John Perry

Loops

Definite loops

Some useful
tricks w/loops

Indefinite loops

Summary

More detailed example

Given f (x), a,b ∈R, and n ∈N, estimate
´ b

a f (x) dx using n left
Riemann sums.

• Excellent candidate for definite loop if n known from
outset.

• Riemann sum: repeated addition: loop!
• If n is not known, can still work. . . details later

• Start with pseudocode. . .



MAT 305:
Mathematical
Computing

John Perry

Loops

Definite loops

Some useful
tricks w/loops

Indefinite loops

Summary

Pseudocode for definite loop

for c ∈C
loop statement 1
loop statement 2
. . .

out-of-loop statement 1

Notice:
• indentation ends at end of loop
• ∈, not in (mathematics, not Python)
• no colon
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Building pseudocode

Ask yourself:
• What list do I use to repeat the action(s)?
• What do I have to do in each loop?

• How do I break the task into pieces?
• Divide et impera! Divide and conquer!
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Review
How do we estimate limits using left Riemann sums?

ˆ b

a
f (x) dx≈

n
∑

i=1

f (xi)∆x

where
• ∆x= b−a

n
• x1 = a, x2 = a+∆x, x3 = a+ 2∆x, . . . xn = a+(n− 1)∆x

• short: xi = a+(i− 1)∆x

So. . .
• C = (1,2, . . . ,n)
• repeat addition of f (xi)∆x

• use computer to remember previous value and add to it
• sum= sum+ . . .
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Pseudocode

Let∆x= b−a
n this is not given

Let C = (1,2, . . . ,n) set up L—notice no Pythonese
Let S= 0 S must start at 0 (no sum)
for i ∈C

xi = a+(i− 1)∆x determine xi
S= S+ f (xi)∆x add to S

translates to Sage as. . .
Delta_x = (b - a)/n

C = range(1,n+1) now use Pythonese
S = 0

for i in C:

xi = a + (i - 1)*Delta_x

S = S + f(x=xi)*Delta_x
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Try it!

sage: f = x**2; a = 0; b = 1; n = 3

sage: Delta_x = (b - a)/n

sage: C = range(1,n+1)

sage: S = 0

sage: for i in C:

xi = a + (i - 1)*Delta_x

S = S + f(x=xi)*Delta_x

sage: S

5/27
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What happened?

C ←− [1,2,3]

loop 1: i←− 1
xi = a + (i - 1)*Delta_x

  xi = 0 + 0*(1/3) = 0

S = S + f(x=xi)*Delta_x

  S = 0 + f(0)*(1/3) = 0

loop 2: i←− 2
xi = a + (i - 1)*Delta_x

  xi = 0 + 1*(1/3) = 1/3

S = S + f(x=xi)*Delta_x

  S = 0 + f(1/3)*(1/3) = 1/27

loop 3: i←− 3
xi = a + (i - 1)*Delta_x

  xi = 0 + 2*(1/3) = 2/3

S = S + f(x=xi)*Delta_x

  S = 1/27 + f(2/3)*(1/3) = 5/27
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Try it with larger n!

sage: f = x**2; a = 0; b = 1; n = 1000

sage: Delta_x = (b - a)/n

sage: C = range(1,n+1)

sage: S = 0

sage: for i in C:

xi = a + (i - 1)*Delta_x

S = S + f(x=xi)*Delta_x

sage: S

665667/2000000

correct answer is 1
3 ; use round() to see how “close”
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Typing and retyping is a pain
Make a function out of it!

algorithm left_Riemann_sum

inputs
f , a function on [a,b]⊂R
n ∈N

outputs
left Riemann sum approximation of

´ b
a f (x) dx w/n rectangles

do
Let∆x= b−a

n
Let C = (1,2, . . . ,n)
Let S= 0
for i ∈C

xi = a+(i− 1)∆x
S= S+ f (xi)∆x

return S don’t forget to report the result!
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Translate into Sage code. . .

. . . on your own. Raise your hand if you need help.

You should be able to compute:
• left_Riemann_sum(x**2, 0, 1, 3)

• left_Riemann_sum(x**2, 0, 1, 1000)

. . . and obtain the same answers as before.
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Looping through nonexistent lists

• range(n) creates a list of n elements

• for each in range(n) creates the list before looping

• constructing a list, merely to repeat n times, is wasteful

• for each in xrange(n) has same effect
• slightly faster, uses less computer memory
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Building lists from lists

Python (Sage) has a handy list constructor
• Suppose Cold has n elements
• Let Cnew = [f (x) for x ∈Cold]

• Cnew will be a list with n elements
• Cnew[i] == f (Cold[i])
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Example

sage: C = [0,3,5,4]

sage: D = [c**2 for c in C]

sage: D

[0, 9, 25, 16]
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The while command

while condition :

statement1
statement2
. . .

where
• statements are executed while condition remains true

• statements will not be executed if condition is false
from the get-go

• like definite loops, variables in condition can be modified
• unlike definite loops, variables in condition should be

modified
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Pseudocode for indefinite loop

while condition
statement1
statement2
. . .

out-of-loop statement 1

Notice:
• indentation ends at end of loop
• no colon
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Example

sage: f = x**10

sage: while f != 0:

f = diff(f)

print f

10*x^9

90*x^8

720*x^7

5040*x^6

30240*x^5

151200*x^4

604800*x^3

1814400*x^2

3628800*x

3628800

0
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More interesting example

Use the Method of Bisection to approximate a root of cosx− x
on the interval [0,1], correct to the hundredths place.

Hunh?!?
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Method of Bisection?

The Method of Bisection is based on:

Theorem (Intermediate Value Theorem)
If
• f is a continuous function on [a,b], and
• f (a) 6= f (b),

then
• for any y between f (a) and f (b),
• ∃c ∈ (a,b) such that f (c) = y.
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Continuous?

f continuous at x= a if
• can evaluate limit at x= a by computing f (a), or
• can draw graph without lifting pencil

Upshot: To find a root of a continuous function f , start with
two x values a and b such that f (a) and f (b) have different signs,
then bisect the interval.
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1 Animation = 1000 Words

(need Acrobat Reader to see animation)
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Back to the example. . .

Check hypotheses. . .
• f (x) = cosx− x

• x, cosx continuous
• difference of continuous functions also continuous
∴ f continuous

• a= 0 and b= 1

• f (a) = 1> 0
• f (b)≈−0.4597< 0

Intermediate Value Theorem applies: can start Method of
Bisection.
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How to solve it?

Idea: Interval endpoints a and b are not close enough as long as
their digits differ through the hundredths place.

Application: While their digits differ through the hundredths
place, halve the interval.

“Halve” the interval? Pick the half containing a root!
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Pseudocode

algorithm method_of_bisection

inputs
f , a continuous function
a,b ∈R such that a 6= b and f (a) and f (b) have different signs

outputs
c ∈ [a,b] such that f (c)≈ 0 and c accurate to hundredths place

do
while the digits of a and b differ through the hundredths

Let c= a+b
2

if f (a) and f (c) have the same sign
Let a= c Interval now

�

a+b
2 ,b
�

else if f (a) and f (c) have opposite signs
Let b= c Interval now

�

a, a+b
2

�

else we must have f (c) = 0
return c

return a, rounded to hundredths place
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Try it!

sage: def method_of_bisection(f,x,a,b):

while round(a,2) != round(b,2):

c = (a + b)/2

if f(x=a)*f(x=c) > 0:

a = c

elif f(x=a)*f(x=c) < 0:

b = c

else:

return c

return round(a,2)

sage: method_of_bisection(cos(x)-x,x,0,1)

0.74
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Summary

Two types of loops

• definite: n repetitions known at outset

• for c ∈C

• collection C of n elements controls loop
• don’t modify C

• indefinite: number of repetitions not known at outset

• while condition

• Boolean condition controls loop


	Loops
	Definite loops
	Some useful tricks w/loops
	Indefinite loops
	Summary

	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	0.13: 
	0.14: 
	0.15: 
	0.16: 
	0.17: 
	0.18: 
	0.19: 
	0.20: 
	0.21: 
	0.22: 
	0.23: 
	0.24: 
	anm0: 


