
MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

MAT 305: Mathematical Computing
Solving equations in Sage

John Perry

University of Southern Mississippi

Fall 2013

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Outline

1 Exact solutions to equations
Exact solutions
Extracting solutions
Systems of linear equations

2 Approximate solutions to equations

3 Summary

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Outline

1 Exact solutions to equations
Exact solutions
Extracting solutions
Systems of linear equations

2 Approximate solutions to equations

3 Summary

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Exact solutions

• Many equations can be solved without rounding

• exact solutions
• Solving by radicals: old, important problem

• Niels Abel, Evariste Galois, Joseph Lagrange,
Paolo Ruffini, . . .

• Special methods

• Others require approximate solutions

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

The solve() command

solve(eqs, vars) where
• eqs is a list of equations

• an equation contains the symbol ==, “equals”
• the symbol = means “assign”

• vars is a list of variables to solve for

• variables not listed are treated as constants
• if only one variable, do not use list

• returns a list of solutions if Sage can solve eqs exactly

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

= 6= ==

FACT OF PYTHON

• = (single)

• assignment of a value to a symbol
• f = x**2 - 4 assigns the value x2− 4 to f
• “let f = x2− 4”

• == (double)

• two quantities are equal
• 16==4**2 is true
• 16==5**2 is false
• 16==x**2 is conditional; it depends on the value of x

• Confuse the two? naughty user

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Example

sage: 16==4**2
True

sage: 16==5**2
False

sage: 16==x**2
16 == x^2 (cannot simplify the expression)

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Univariate polynomials

sage: solve([3*x+1==4*(x-2)+3],x)
[x == 6]

sage: solve([x**2==-1],x)
[x == -I, x == I] (I represents

p
−1)

sage: solve([x**5+2*x+1==0],x)
[0 == x^5 + 2*x + 1] (Sage cannot find exact solution)

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Unknown constants

sage: var(’a b c’)
(a, b, c)

sage: solve([a*x**2+b*x+c==0],x)
[x == -1/2*(b + sqrt(-4*a*c + b^2))/a,
x == -1/2*(b - sqrt(-4*a*c + b^2))/a]

(quadratic formula!)

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Copying solutions not always a
good idea

sage: solve([3*x**3-4*x==7],x)
[x == -1/2*(1/54*sqrt(3713) + 7/6)^(1/3)*(I*sqrt(3)
+ 1) + 1/9*(2*I*sqrt(3) - 2)/(1/54*sqrt(3713) +
7/6)^(1/3), x == -1/2*(1/54*sqrt(3713) +
7/6)^(1/3)*(-I*sqrt(3) + 1) + 1/9*(-2*I*sqrt(3) -
2)/(1/54*sqrt(3713) + 7/6)^(1/3), x ==
(1/54*sqrt(3713) + 7/6)^(1/3) + 4/9/(1/54*sqrt(3713)
+ 7/6)^(1/3)]

ouch!

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Assign, use []

To extract values from solutions, assign and use []

Example
sage: sols = solve([x**4-1==0],x)

sage: sols
[x == I, x == -1, x == -I, x == 1]

sage: sols[0]
x == I

sage: sols[1]
x == -1

sage: sols[3]
x == 1

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

[] ranges from 0 to (length-1)

FACT OF PYTHON

Suppose L is a list or tuple of length n
• first element: L[0]
• last element: L[n-1]
• L[n]? naughty user

Example
sage: sols = solve([x**4-1==0],x)

sage: sols
[x == I, x == -1, x == -I, x == 1]

sage: sols[4]
. . . output cut. . .
IndexError: list index out of range

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

But I want only the number. . . !

• Every equation has a right hand side

• Use .rhs() command

• “dot” command: append to object

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Example

sage: eq = 4*x**2 - 3*x + 1 == 0

sage: sols = solve([eq],x)

sage: len(sols)
2 (len() gives length of a collection)

sage: x1 = sols[0]

sage: x1
x == -1/8*I*sqrt(7) + 3/8 (oops! want only solution)

sage: x1 = sols[0].rhs()

sage: x1
-1/8*I*sqrt(7) + 3/8 (better)

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Let’s test solutions

Extract second solution; substitute into equation

sage: x2 = sols[1].rhs()

sage: x2
1/8*I*sqrt(7) + 3/8

sage: eq(x=x2)
4*(1/8*I*sqrt(7) + 3/8)^2
- 3/8*I*sqrt(7) - 1/8 == 0 (need to expand product)

sage: expand(eq(x=x2))
0 == 0

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Systems of linear equations

• system of linear, multivariate equations

• can always be solved exactly

• zero, one, or infinitely many solutions

• solution is a list of solutions

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

No solution

sage: var(’y’)
(y)

sage: solve([x + y == 1,
x + y == 0],

[x,y])
. . . output cut. . .
[]

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

One solution

sage: var(’z’)
(z)
sage: solve([3*x - 4*y + z == 1,

2*x - 3*y + 4*z == 2,
7*x + 10*y - 39*z == 1],

[x,y,z])
[[x == (3/2), y == 1, z == (1/2)]]

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Infinitely many solutions

sage: solve([3*x - 4*y + z == 1,
2*x - 3*y + 4*z == 2,
-6*x + 8*y - 2*z == -2],

[x,y,z])
[[x == 13*r1 - 5, y == 10*r1 - 4, z == r1]]

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

r1?!? What is r1?

r1 is a parameter that can take infinitely many values

[[x == 13*r1 - 5, y == 10*r1 - 4, z == r1]]

corresponds to

x= 13t− 5, y= 10t− 4, z= t.

Example
t= 0?
• x=−5, y=−4, z= 0
• Substitute into system:

3 (−5)− 4 (−4)+ 0= 1
2 (−5)− 3 (−4)+ 4 (0) = 2
−6 (−5)+ 8 (−4)− 2 (0) =−2.

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Extract and test

sage: eq1 = 3*x - 4*y + z == 1
sage: eq2 = 2*x - 3*y + 4*z == 2
sage: eq3 = -6*x + 8*y - 2*z == -2
sage: sols = solve([eq1, eq2, eq3], [x,y,z])

sols is a list of lists. . .

sage: sol1 = sols[0]
sage: x1 = sol1[0].rhs()
sage: y1 = sol1[1].rhs()
sage: z1 = sol1[2].rhs()
sage: x1,y1,z1
(13*r2 - 5, 10*r2 - 4, r2)
sage: eq1(x=x1,y=y1,z=z1)
1 == 1

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Outline

1 Exact solutions to equations
Exact solutions
Extracting solutions
Systems of linear equations

2 Approximate solutions to equations

3 Summary

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Why approximate?

• Exact solutions often. . . complicated

−
1

2
·

3

sp
3713

54
+

7

6
·
�

1+ i
p

3
�

+
−2+ 2i

p
3

9
·

3

sp
3713

54
+

7

6
• Approximate solutions easier to look at, manipulate
−0.8280018073− 0.8505454986i

• Approximation often much, much faster!

• except when approximation fails

• bad condition numbers
• rounding errors
• inappropriate algorithm (real solver, complex

roots)

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

The find_root() command

find_root(equation, xmin, xmax) where
• equation has a root between real numbers xmin and xmax
• reports an error if no root exists
• this is a real solver: looks for real roots
• uses Scipy package

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Example

sage: find_root(x**5+2*x+1==0,-10,0)
-0.48638903593454297
sage: find_root(x**5+2*x+1==0,0,10)
. . . output cut. . .
RuntimeError: f appears to have no zero on the
interval

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

The .roots() command

polynomial.roots() ordinarily finds exact roots of a
polynomial, along with multiplicities
• reports error if cannot find explicit roots
• approximate real roots: option ring=RR

• approximate complex roots: option ring=CC

• uses Scipy package
• “multiplicity” = “shape” of root

• linear, quadratic, cubic, . . .

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Ring?!?

field addition, multiplication as in rational, real,
complex numbers

ring addition, multiplication common to integers,
matrices, and fields

+ as usual
× weird sometimes

• ab 6= ba matrices
• no 1/a even if a 6= 0 integers, matrices
• ab= 0 but a,b 6= 0 matrices

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Ring?!?

field addition, multiplication as in rational, real,
complex numbers

ring addition, multiplication common to integers,
matrices, and fields

+ as usual
× weird sometimes

• ab 6= ba matrices
• no 1/a even if a 6= 0 integers, matrices
• ab= 0 but a,b 6= 0 matrices

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Exact example

sage: p = x**3 + 2*x**2 - 4*x - 8
sage: p.roots()
[(2, 1), (-2, 2)] roots are 2 (mult. 1) and -2 (mult. 2)

(x+2)2

(x−2)1−2

2

see if you can make Sage produce this image!

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Exact example

sage: p = x**3 + 2*x**2 - 4*x - 8
sage: p.roots()
[(2, 1), (-2, 2)] roots are 2 (mult. 1) and -2 (mult. 2)

(x+2)2

(x−2)1−2

2

see if you can make Sage produce this image!

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Approximate example

sage: p = x**5 + 2*x + 1
sage: p.roots()
. . . output cut. . .
RuntimeError: no explicit roots found

sage: p.roots(ring=RR)
[(-0.486389035934543, 1)]

root approximately −.486389 w/multiplicity 1

Fundamental Theorem of Algebra
Every polynomial of degree n has n complex roots.

Where are the other 4 roots?

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Approximate example

sage: p = x**5 + 2*x + 1
sage: p.roots()
. . . output cut. . .
RuntimeError: no explicit roots found
sage: p.roots(ring=RR)
[(-0.486389035934543, 1)]

root approximately −.486389 w/multiplicity 1

Fundamental Theorem of Algebra
Every polynomial of degree n has n complex roots.

Where are the other 4 roots?

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Approximate example

sage: p = x**5 + 2*x + 1
sage: p.roots()
. . . output cut. . .
RuntimeError: no explicit roots found
sage: p.roots(ring=RR)
[(-0.486389035934543, 1)]

root approximately −.486389 w/multiplicity 1

Fundamental Theorem of Algebra
Every polynomial of degree n has n complex roots.

Where are the other 4 roots?

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Extract and use complex roots

sage: sols = p.roots(ring=CC)

How can we extract roots?

sols is a list of tuples (root, multiplicity):
need to extract tuple, then root

sage: x0 = sols[0] want first root
sage: x0
(-0.486389035934543, 1) oops! this is the tuple!
sage: x0 = sols[0][0] root is first element of tuple
sage: x0
-0.486389035934543
sage: x1 = sols[1][0] want second root
sage: x1
-0.701873568855862 - 0.879697197929823*I

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Extract and use complex roots

sage: sols = p.roots(ring=CC)

How can we extract roots?

sols is a list of tuples (root, multiplicity):
need to extract tuple, then root

sage: x0 = sols[0] want first root
sage: x0
(-0.486389035934543, 1) oops! this is the tuple!
sage: x0 = sols[0][0] root is first element of tuple
sage: x0
-0.486389035934543
sage: x1 = sols[1][0] want second root
sage: x1
-0.701873568855862 - 0.879697197929823*I

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

What is going on here?

sols

0
0 −0.486389 . . . (approximation)
1 1 (multiplicity)

1
0 −0.701873 . . .− 0.879697 . . . i (approximation)
1 1 (multiplicity)

...
...

• first bracket: gets solution
• each solution is a tuple

• second bracket: gets information about solution

[0] approximation
[1] multiplicity

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

What is going on here?

sols

0
0 −0.486389 . . . (approximation)
1 1 (multiplicity)

1
0 −0.701873 . . .− 0.879697 . . . i (approximation)
1 1 (multiplicity)

...
...

• first bracket: gets solution
• each solution is a tuple

• second bracket: gets information about solution

[0] approximation
[1] multiplicity

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Outline

1 Exact solutions to equations
Exact solutions
Extracting solutions
Systems of linear equations

2 Approximate solutions to equations

3 Summary

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Summary

• distinguish = (assignment) and == (equality)
• Sage can find exact or approximate roots
• solve() finds exact solutions

• not all equations can be solved exactly
• systems of linear equations always exact
• extract using [] and .rhs()

• find_root() approximates real roots on an interval

• error if no roots on interval

• .roots(ring=...) approximates roots

• RR for real roots only; CC for all complex roots
• append to polynomial or equation

	Exact solutions to equations
	Exact solutions
	Extracting solutions
	Systems of linear equations

	Approximate solutions to equations
	Summary

