INDIVIDUAL ASSIGNMENT 2

MAT 305 SPRING 2013

Due date: 20 Mar 2013
If you view the class syllabus online, you notice an animation at the top of the page. This animation shows a relationship that you learned in Calculus:

$$
\frac{d y}{d x}=\lim _{\Delta x \rightarrow 0}\left(\frac{\Delta y}{\Delta x}\right)
$$

that is, the instantaneous rate of change of y, also called its derivative, is the limit of the average rates of change of y between x_{1} and x_{2} as $\Delta x=x_{2}-x_{1}$ approaches zero.

Rely on what you know from Calculus to answer 1-3; answer the rest and submit all work as a Sage worksheet on https://lydia.st.usm.edu:8080/.
(1) Describe how the instantaneous rate of change of y appears in the animation.
(2) Describe how the average rates of change of y appear in the animation.
(3) Describe how the relationship between the average rates of change and the instantaneous rate of change appears in the animation.
(4) Use the last digit of your student number to select the following function and point.

if your student number ends with...	let $f(x)=\ldots$	and $a=\ldots$
0,1	$e^{-x} \cos x$	$-\frac{\pi}{4}$
2,3	$e^{-x} \sin x$	$\frac{\pi}{4}$
4,5	$\ln \left(1+x^{2}\right)$	0
6,7	$\frac{1}{1+x^{2}}$	0
8,9	$\frac{2 x}{1+x^{2}}$	1

(5) Plot f in black over a small neighborhood of $x=a$.
(6) Show that the derivative of f at $x=a$ is 0 .

Note: Use Sage to do this; don't do it by hand.
(7) Plot both f and the line tangent to f at $x=a$. Make the tangent line blue.
(8) Choose four x values b_{1}, b_{2}, b_{3}, and b_{4} close to $x=a$. Compute the slopes of the secant lines between a and b_{i} for $i=1,2,3,4$.
(9) Create four plots, each of which combines f with a blue secant line.
(10) Combine all the plots to obtain an animation similar to the one on my webpage.

Hint: Notice that on the webpage the secant lines move forwards and backwards; your animation should replicate this behavior.

