INDIVIDUAL ASSIGNMENT 1

MAT 305 FALL 2013

1. BASIC BACKGROUND

In Calculus II, you learned the definition of the (definite) integral,

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x \tag{1.1}
\end{equation*}
$$

where $\Delta x=\frac{b-a}{n}$, and x_{i}^{*} is chosen from the i th subinterval of $[a, b]$. You also learned the Fundamental Theorem of Calculus, which has two parts:
(1) If we consider the integral of f as a function, then its derivative is f itself. That is,

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

(2) We can evaluate an integral by evaluating any antiderivative of f at the endpoints of the interval (a and b), and subtracting. That is, if $F^{\prime}(x)=f(x)$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

This makes it important to compute the antiderivative, also called the (indefinite) integral.

2. Approximating integrals

Unfortunately, the antiderivative of an "elementary" function is not always elementary.
Example 1. The arclength of an ellipse cannot be computed using elementary functions, nor can

$$
\int e^{x^{2}} d x
$$

In these and other cases, we need to compute the integral by approximation.
One way to approximate a definite integral is by choosing a "large" value of n and not computing the limit in Equation (1.1) above:

$$
\begin{equation*}
\int_{a}^{b} f(x) d x \approx \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x \tag{2.1}
\end{equation*}
$$

The choice of x_{i}^{*} is usually one of
(1) right-endpoint approximation: $x_{i}^{*}=a+i \Delta x$,
(2) left-endpoint approximation: $x_{i}^{*}=a+(i-1) \Delta x$; and
(3) midpoint approximation: $x_{i}^{*}=a+\frac{2 i+1}{2} \cdot \Delta x$.

Small values of n give very poor approximations; "sufficiently large" values give good ones.

3. Technology to the rescue

In the lecture on Collections, you learned that Sage can produce a list fairly of numbers fairly easily, using the construction

$$
\left[f(x i) \text { for } x i \text { in }\left[x_{1}, x_{2}, \ldots\right]\right. \text {] }
$$

where x_{1}, x_{2}, \ldots are values for which you want to compute each $f\left(x_{i}\right)$, or

$$
[f(i) \text { for } i \text { in range }(n)]
$$

where you want to compute $f(i)$ for each $i \in\{0,1, \ldots, n-1\}$.
In addition, Sage has a convenient command to compute the sum of a collection: sum (C) where C is a list, set, or tuple. We can use this fact to approximate integrals "easily". Answer the following problems, and submit the results as a Sage notebook (to be discussed in class).
(1) Use the last digit of your student number to select the following function and interval. if your student number ends with... let $f(x)=\ldots$ and $[a, b]=\ldots$

0,1	$\tan x^{3}$	$\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$
2,3	$e^{x^{2}}$	$[-1,0]$
4,5	$\sqrt{9+\frac{4 x^{2}}{9-x^{2}}}$	$[0,3]$
6,7	$\sin \left(x^{2}\right)$	$\left[0, \frac{\pi}{2}\right]$
8,9	$\frac{\sin x}{x}$	$\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$

(2) Create a plot that illustrates $\int_{a}^{b} f(x) d x$. Your plot should include

- a plot of $f(x)$ on $[a, b]$,
- a label near one end of $f(x)$, and
- a shading of the region between $f(x)$ and the x-axis.
(3) Create a plot that illustrates the approximation of $\int_{a}^{b} f(x) d x$ by right-endpoint estimation with four subintervals. Your plot should include
- a plot of $f(x)$ on $[a, b]$,
- a label near one end of $f(x)$,
- four filled-in rectangles that illustrate the approximation of $f(x)$, and
- four labels inside each rectangle, indicating the area of the rectangle.
(4) Use the sum() command to perform a right-endpoint approximation of the area under $f(x)$ with
(a) $n=4$,
(b) $n=40$,
(c) $n=400$,
(d) $n=4000$,
(e) $n=40000$.
(5) Use the sum() command to perform a left-endpoint approximation of the area under $f(x)$ with the same values of n as in the previous problem.
(6) Use the sum() command to perform a midpoint approximation of the area under $f(x)$ with the same values of n as in the previous problem.

