
MAT 305: Review #6

June 18, 2014

Directions: The usual counsels apply.

Part I

Modifying an already-written function
1. In class, we wrote a function, method_of_bisection, that approximates the root of a func-

tion to 2 decimal places. Rewrite the function so that it approximates the root of a function
to d decimal places, where d is an argument specified by the user.

Part II

Functions with definite loops
On a previous assignment, you had to decide whether a given set (the quaternions) was a group.
This required a lot of calculations that you had to request by hand. This time, you’ll use func-
tions and loops, so that you can check this for arbitrary sets and operations.

2. A finite set S is “a group under an operation ⊗” if it satisfies the four properties of:

• closure, that is, x ⊗ y ∈ S for all x, y ∈ S;

• associative, that is, x ⊗ (y ⊗ z) = (x ⊗ y)⊗ z for all x, y, z ∈ S;

• identity, that is, we can find ι ∈ S such that xι= x and ιx = x for all x ∈ S;

• inverse, that is, for any x ∈ S, we can find y ∈ S such that xy = y x = ι.

In Figures 1, 2, 3, and 4 you will find pseudocode for a computer program to test each prop-
erty. Implement three of your algorithms as a Sage function. The operation should be used as
a function with two inputs x and y; you can use it by invoking set_operation(x,y). I will
do an example of one property in class, which should make the others easier.

1



3. Test your answers on each of the following possibilities:

(a) S is the quaternions, and ⊗ is matrix multiplication. (This should satisfy all properties.)

(b) S is the set of integers from 0 to 11, and ⊗ is addition, modulo 12. (This should satisfiy
all properties.)

(c) S is the set of integers from 0 to 11, and ⊗ is multiplication, modulo 12. (This should
satisfy all properties, except the inverse property.)

4. Write one function that, when given a finite set S and an operation ⊗, determines whether S
is a group under ⊗. You may (and should) invoke the programs you’ve already written.

5. Use your program(s) to answer the following.

(a) Use your programs to determine which of the following satisfy all four properties.

(i) N5 = {1,2,3,4}, where the operation is multiplication, modulo 5.
(ii) Choose 5 values of n, larger than 11 but smaller than 20. For each value of n, re-

peat (i) for Nn = {1,2, . . . , n− 1}. Note that the operation changes to multiplication
modulo n, rather than modulo 5.

(iii) P = {1, x, x + 1}, where the operation is multiplication modulo 2 and modulo x2+1.
To set this up,
• define a “base ring,” R=Z2 (sage: R = GF(2))
• define a “quotient ring,” S =Z2/




x2+ 1
�

(sage: S = (R[x]).quo(x^2+1))
• define the set P (sage: P = [S(1),S(x),S(x+1)])
• define the operation ⊗ (sage: def op_mul(a,b): return a*b)

When you test identity, use S(ι) to make sure your guess for ι has the right form.
(iv) Q= {1, x, x + 1}, where the operation is multiplication modulo 2 and modulo x2+

x + 1. To set this up, repeat the above, but replace x^2+1 by x^2+x+1.
(v) F =
�

x, x2,
p

x
	

, where the operation is composition of functions. To set this up,
• define the set F (sage: F = [x, x^2, sqrt(x)])
• define the operation ⊗ (sage: def op_compx(a,b): return a(x=b))

To check yourself: (i) satisfies all properties; (ii) sometimes fails inverse, but otherwise satisfies
all; (iii) fails closure and inverse; (iv) satisfies all; (v) satisfies only identity.

(b) Look at the results of (i) and (ii). What characteristic was shared by all the sets that
satisfied all four properties?

(c) Try multiplying some of the elements of (iii). What products surprise you most? All of
them should be somewhat surprising, but two are more surprising than others.

2



algorithm is_closed
inputs

S, a finite set
⊗, an operation on S

outputs
whether S is closed under ⊗

do
Let result = true
for s ∈ S

for t ∈ S
if s t 6∈ S

Let result = false
return result

Figure 1: Pseudocode for Closure

algorithm is_associative
inputs

S, a finite set
⊗, an operation on S

outputs
whether S is associative under ⊗

do
Let result = true
for s ∈ S

for t ∈ S
for u ∈ S

if (s t ) u 6= s (t u)
Let result = false

return result

Figure 2: Pseudocode for Associative

3



algorithm has_identity
inputs

S, a finite set
⊗, an operation on S

outputs
true and the identity of S under ⊗, if it has one
false otherwise

do
Let identity = false
for ι ∈ S

Let maybe_identity = true
for s ∈ S

if ιs 6= s or s ι 6= s
Let maybe_identity = false

if maybe_identity
return true, ι

return false

Figure 3: Pseudocode for Identity

algorithm satisfies_inverse
inputs

S, a finite set
⊗, an operation on S
ι, the identity of S under ⊗

outputs
true iff S satisfies the inverse property under ⊗

do
for s ∈ S

Let has_inverse = false
for t ∈ S

if s t = ι
Let has_inverse = true

if not has_inverse
return false

return true

Figure 4: Pseudocode for Inverse

4


