
TEAM ASSIGNMENT 2

MAT 305 FALL 2011

1. DIRECTIONS

The groups for this assignment are

Group 1 Group 2 Group 3
Bethany Abdul-Hadi Ryan Anderson Aaron Ayers

Nevada Brown Anna Cubbage Joel Huber
Virginia Espejo Cononiah Watson Charles Nelson
Kris Katterjohn

Group 4 Group 5 Group 6
Emily Huffman Robert Hust Amy Kern
Nicole Kershaw Hannah Ryan Chreighton Nelms

Jerry Pirkle Shannon West Richard Robbins
Kristie West

Solve the following problems in a Sage worksheet. Unless you find it infeasible, your responses
to instructions 2 and 3 should appear in the same worksheet as your response to instruction
4. Remember that shift-clicking on the blue line above a computational cell creates a new text
cell, and double-clicking on a text cell allows you to edit that text cell. If you find it useful,
control-clicking creates a computational cell after the computational cell currently highlighted.

Each group should submit one worksheet. Submit the worksheet by sharing the worksheet
with my account (john_perry) at

https://pax.st.usm.edu:8000/

If you wish, you may share with all the members of the group who are registered at that website,
but this is not necessary.

The due date for this assignment is

2. THE ASSIGNMENT

An important problem in mathematics is that of root finding: that is, given a function f (x),
finding any roots of f in an interval. Exact methods exist for many functions:

• In the case of a linear function f (x) = ax + b , this is easy.
– If a 6= 0, then x =−b/a.
– If a = 0, then there is no solution unless b = 0, in which case any real number is a

solution.
• In the case of a quadratic function f (x) = ax2+ b x + c , this is relatively easy.

– If a 6= 0, then x =
−b ±
p

b 2− 4ac

2a
.



– If a = 0, then you are really in the case of a line.

In higher-degree cases, it’s somewhat harder. Sometimes you learn exact methods, but in cases
where an exact method is either too slow, too unwieldy, or simply impossible, we need a method
to approximate the roots. In class, I gave an example of the Method of Bisection.

Isaac Newton developed a simple method that works for many functions, and is based on
techniques of differentiation. We don’t always study it, but it appears in most Calculus text-
books. Newton’s method is still used and studied today. In this assignment, you will design and
implement a function that uses Newton’s method to approximate a root of a function.

1. Take a Calculus book and read the relevant section on Newton’s method. I can’t describe
every text, but
• in the grey Thomas textbook, it appears in Chapter 4, Section 7, starting on page 299;
• in the black Stewart textbook used for Honors Calculus some years ago, it appears in

Chapter 4, Section 8, starting on page 334;
• in the blue Stewart textbook used for Calculus now, it appears in Chapter 4, Section 6,

starting on page 236.
In other textbooks, it should appear in the table of contents or in the index.

2. Write a brief description of Newton’s method that should explain the concept to someone
who knows precalculus, but not Calculus. Avoid Calculus jargon such as limit, derivative, or
continuous. Don’t even try to explain such concepts. Use only terms and concepts from precal-
culus. Besides explaining the steps of the method, do not neglect to touch on the following.
• What criteria must the function f satisfy?
• What criteria must the root satisfy?
• What criteria must the initial guess satisfy?
• When do you decide to stop approximating?

3. Write pseudocode for a program to implement Newton’s method. Be sure to format the
pseudocode properly.

4. Write a Sage function that implements Newton’s method. Choose a handful (∼5) of exercises
from your Calculus text to use as examples of how the function works. Be sure to indicate the
text and exercise number.


