
MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

MAT 305: Mathematical Computing
Solving equations in Sage

John Perry

University of Southern Mississippi

Fall 2011

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Outline

1 Exact solutions to equations
Exact solutions
Extracting solutions
Systems of linear equations

2 Approximate solutions to equations

3 Summary

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Outline

1 Exact solutions to equations
Exact solutions
Extracting solutions
Systems of linear equations

2 Approximate solutions to equations

3 Summary

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Exact solutions

• Many equations can be solved without rounding

• exact solutions
• Solving by radicals: old, important problem

• Niels Abel, Evariste Galois, Joseph Lagrange,
Paolo Ruffini, . . .

• Special methods

• Others require approximate solutions

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

The solve() command

solve(eqs, vars) where
• eqs is a list of equations

• an equation contains the symbol ==, “equals”
• the symbol = means “assign”

• vars is a list of variables to solve for

• variables not listed are treated as constants
• if only one variable, do not use list

• returns a list of equations (solutions) if Sage can solve eqs
exactly

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

= 6= ==

FACT OF PYTHON

• = (single)

• assignment of a value to a symbol
• f = x**2 - 4 assigns the value x2− 4 to f
• “let f = x2− 4”

• == (double)

• two quantities are equal
• 16==4**2 is true
• 16==5**2 is false
• 16==x**2 is conditional; it depends on the value of x

• Confuse the two? naughty user

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Example

sage: 16==4**2
True

sage: 16==5**2
False

sage: 16==x**2
16 == x^2 (translation: I dunno)

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Univariate polynomials

sage: solve([3*x+1==4*(x-2)+3],x)
[x == 6]

sage: solve([x**2==-1],x)
[x == -I, x == I] (I represents

p
−1)

sage: solve([x**5+2*x+1==0],x)
[0 == x^5 + 2*x + 1] (Sage cannot find exact solution)

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Unknown constants

sage: var(’a b c’)
(a, b, c)

sage: solve([a*x**2+b*x+c==0],x)
[x == -1/2*(b + sqrt(-4*a*c + b^2))/a,
x == -1/2*(b - sqrt(-4*a*c + b^2))/a]

(quadratic formula!)

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Copying solutions not always a
good idea

sage: solve([3*x**3-4*x==7],x)
[x == -1/2*(1/54*sqrt(3713) + 7/6)^(1/3)*(I*sqrt(3)
+ 1) + 1/9*(2*I*sqrt(3) - 2)/(1/54*sqrt(3713) +
7/6)^(1/3), x == -1/2*(1/54*sqrt(3713) +
7/6)^(1/3)*(-I*sqrt(3) + 1) + 1/9*(-2*I*sqrt(3) -
2)/(1/54*sqrt(3713) + 7/6)^(1/3), x ==
(1/54*sqrt(3713) + 7/6)^(1/3) + 4/9/(1/54*sqrt(3713)
+ 7/6)^(1/3)]

ouch!

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Assign, use []

To extract values from solutions, assign and use []

Example
sage: sols = solve([x**4-1==0],x)

sage: sols
[x == I, x == -1, x == -I, x == 1]

sage: sols[0]
x == I

sage: sols[1]
x == -1

sage: sols[3]
x == 1

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

[] ranges from 0 to (length-1)

FACT OF PYTHON

Suppose L is a list or tuple of length n
• first element: L[0]
• last element: L[n-1]
• L[n]? naughty user

Example
sage: sols = solve([x**4-1==0],x)

sage: sols
[x == I, x == -1, x == -I, x == 1]

sage: sols[4]
. . . output cut. . .
IndexError: list index out of range

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

But I want only the number. . . !

• Every equation has a right hand side

• Use .rhs() command

• “dot” command: append to object

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Example

sage: eq = 4*x**2 - 3*x + 1 == 0

sage: sols = solve([eq],x)

sage: len(sols)
2 (len() gives length of a collection)

sage: x1 = sols[0]

sage: x1
x == -1/8*I*sqrt(7) + 3/8 (oops! want only solution)

sage: x1 = sols[0].rhs()

sage: x1
-1/8*I*sqrt(7) + 3/8 (better)

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Let’s test solutions

Extract second solution; substitute into equation

sage: x2 = sols[1].rhs()

sage: x2
1/8*I*sqrt(7) + 3/8

sage: eq(x=x2)
4*(1/8*I*sqrt(7) + 3/8)^2
- 3/8*I*sqrt(7) - 1/8 == 0 (need to expand product)

sage: expand(eq(x=x2))
0 == 0

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Systems of linear equations

• system of linear, multivariate equations

• can always be solved exactly

• zero, one, or infinitely many solutions

• solution is a list of equations

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

No solution

sage: var(’y’)
(y)

sage: solve([x + y == 1,
x + y == 0],

[x,y])
. . . output cut. . .
[]

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

One solution

sage: var(’z’)
(z)
sage: solve([3*x - 4*y + z == 1,

2*x - 3*y + 4*z == 2,
7*x + 10*y - 39*z == 1],

[x,y,z])
[[x == (3/2), y == 1, z == (1/2)]]

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Infinitely many solutions

sage: solve([3*x - 4*y + z == 1,
2*x - 3*y + 4*z == 2,
-6*x + 8*y - 2*z == -2],

[x,y,z])
[[x == 13*r1 - 5, y == 10*r1 - 4, z == r1]]

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

r1?!? What is r1?

r1 is a parameter that can take infinitely many values

[[x == 13*r1 - 5, y == 10*r1 - 4, z == r1]]

corresponds to

x= 13t− 5, y= 10t− 4, z= t.

Example
t= 0?
• x=−5, y=−4, z= 0
• Substitute into system:

3 (−5)− 4 (−4)+ 0= 1
2 (−5)− 3 (−4)+ 4 (0) = 2
−6 (−5)+ 8 (−4)− 2 (0) =−2.

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Extract and test

sage: eq1 = 3*x - 4*y + z == 1
sage: eq2 = 2*x - 3*y + 4*z == 2
sage: eq3 = -6*x + 8*y - 2*z == -2
sage: sols = solve([eq1, eq2, eq3], [x,y,z])

sols is a list of lists. . .

sage: sol1 = sols[0]
sage: x1 = sol1[0].rhs()
sage: y1 = sol1[1].rhs()
sage: z1 = sol1[2].rhs()
sage: x1,y1,z1
(13*r2 - 5, 10*r2 - 4, r2)
sage: eq1(x=x1,y=y1,z=z1)
1 == 1

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Outline

1 Exact solutions to equations
Exact solutions
Extracting solutions
Systems of linear equations

2 Approximate solutions to equations

3 Summary

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Why approximate?

• Exact solutions often. . . complicated

−
1

2
·

3

sp
3713

54
+

7

6
·
�

1+ i
p

3
�

+
−2+ 2i

p
3

9
·

3

sp
3713

54
+

7

6
• Approximate solutions easier to look at, manipulate
−0.8280018073− 0.8505454986i

• Approximation often much, much faster!

• except when approximation fails

• bad condition numbers
• rounding errors
• inappropriate algorithm (real solver, complex

roots)

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

The find_root() command

find_root(equation, xmin, xmax) where
• equation has a root between real numbers xmin and xmax
• reports an error if no root exists
• this is a real solver: looks for real roots
• uses Scipy package

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Example

sage: find_root(x**5+2*x+1==0,-10,0)
-0.48638903593454297
sage: find_root(x**5+2*x+1==0,0,10)
. . . output cut. . .
RuntimeError: f appears to have no zero on the
interval

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

The .roots() command

polynomial.roots() ordinarily finds exact roots of a
polynomial, along with multiplicities
• reports error if cannot find explicit roots
• complex roots: option ring=CC

• approximate numbers in C
• uses Scipy package

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Example

sage: p = x**5+2*x+1
sage: p.roots()
. . . output cut. . .
RuntimeError: no explicit roots found
sage: p.roots(ring=CC)
[(-0.486389035934543, 1),
(-0.701873568855862 - 0.879697197929823*I, 1),
(-0.701873568855861 + 0.879697197929823*I, 1),
(0.945068086823134 - 0.854517514439046*I, 1),
(0.945068086823133 + 0.854517514439046*I, 1)]

notice: each root has multiplicity 1

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Extract and use complex roots

sage: sols = p.roots(ring=CC)

sols is a list of tuples (root, multiplicity):
need to extract tuple first, then root

sage: x0 = sols[0] want first root
sage: x0
(-0.486389035934543, 1)

oops! I want only the root; I have the tuple!
sage: x0 = sols[0][0] root is first element of tuple
sage: x0
-0.486389035934543
sage: x1 = sols[1][0] want second root
sage: x1
-0.701873568855862 - 0.879697197929823*I

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Outline

1 Exact solutions to equations
Exact solutions
Extracting solutions
Systems of linear equations

2 Approximate solutions to equations

3 Summary

MAT 305:
Mathematical
Computing

John Perry

Exact solutions
to equations
Exact solutions

Extracting solutions

Systems of linear
equations

Approximate
solutions to
equations

Summary

Summary

• distinguish = (assignment) and == (equality)
• Sage can find exact or approximate roots
• solve() finds exact solutions

• not all equations can be solved exactly
• systems of linear equations always exact
• extract using [] and .rhs()

• find_root() approximates real roots on an interval

• error if no roots on interval

• .roots(ring=CC) approximates real and complex roots

• append to polynomial or equation

	Exact solutions to equations
	Exact solutions
	Extracting solutions
	Systems of linear equations

	Approximate solutions to equations
	Summary

