MAT 305:
Mathematical
Computing
John Perry

Exact solutions to equations
Exact solutions
Extracting solutions
Systems of linear equations

Approximate solutions to equations

MAT 305: Mathematical Computing Solving equations in Sage

John Perry

University of Southern Mississippi
Fall 2011

MAT 305:
Mathematical Computing

Outline

John Perry

Exact solutions

 to equations Exact solutions Extracting solutions Systems of linear equations(1) Exact solutions to equations

Exact solutions Extracting solutions Systems of linear equations
(2) Approximate solutions to equations
(3) Summary

MAT 305: Mathematical Computing

John Perry
(1) Exact solutions to equations

Exact solutions
Extracting solutions
Systems of linear equations

(2) Approximate solutions to equations

(3) Summary

Exact solutions

- Many equations can be solved without rounding
- exact solutions
- Solving by radicals: old, important problem
- Niels Abel, Evariste Galois, Joseph Lagrange, Paolo Ruffini, ...
- Special methods
- Others require approximate solutions

MAT 305:

The solve() command

- eqs is a list of equations
- an equation contains the symbol $==$, "equals"
- the symbol = means "assign"
- vars is a list of variables to solve for
- variables not listed are treated as constants
- if only one variable, do not use list
- returns a list of equations (solutions) if Sage can solve eqs exactly

$$
=\neq==
$$

FACT OF PYTHON

- = (single)
- assignment of a value to a symbol
- $\mathrm{f}=\mathrm{x} * * 2-4$ assigns the value $x^{2}-4$ to f
- "let $f=x^{2}-4 "$
- == (double)
- two quantities are equal
- $16==4 * * 2$ is true
- $16==5 * * 2$ is false
- $16==x * * 2$ is conditional; it depends on the value of x
- Confuse the two? naughty user

MAT 305: Mathematical Computing

Example

John Perry

Exact solutions

 to equationsExact solutions
Extracting solutions
Systems of linear
equations
Approximate solutions to equations

Summary
sage: $16==4 * * 2$
True
sage: $16==5 * * 2$
False
sage: $16==x * * 2$
$16==x^{\wedge} 2$

MAT 305: Mathematical Computing

Univariate polynomials

MAT 305: Mathematical Computing

Unknown constants

 Mathematical ComputingJohn Perry

Copying solutions not always a good idea

```
sage: solve([3*x**3-4*x==7],x)
    [x == -1/2*(1/54*sqrt(3713) + 7/6) ^(1/3)*(I*sqrt(3)
+ 1) + 1/9*(2*I*sqrt(3) - 2)/(1/54*sqrt(3713) +
7/6)^(1/3), x == -1/2*(1/54*sqrt(3713) +
7/6)^(1/3)*(-I*sqrt(3) + 1) + 1/9*(-2*I*sqrt(3) -
2)/(1/54*sqrt(3713) + 7/6)^(1/3), x ==
(1/54*sqrt(3713) + 7/6)^(1/3) + 4/9/(1/54*sqrt (3713)
+ 7/6)~(1/3)]
```

MAT 305: Mathematical Computing

Assign, use []

Exact solutions to equations Exact solutions Extracting solutions Systems of linear equations

To extract values from solutions, assign and use []
Example
sage: sols $=$ solve([x**4-1==0],x)
sage: sols
[$\mathrm{x}==\mathrm{I}, \mathrm{x}==-1, \mathrm{x}==-\mathrm{I}, \mathrm{x}==1]$
sage: sols[0]
x == I
sage: sols[1]
$\mathrm{x}=-1$
sage: sols[3]
x == 1 Mathematical Computing

John Perry

[] ranges from 0 to (length-1)

FACT OF PYTHON

Suppose L is a list or tuple of length n

- first element: L[0]
- last element: L[n-1]
- L [n] ? naughty user

Example
sage: sols $=$ solve([x**4-1==0],x)
sage: sols
[$\mathrm{x}=\mathrm{I}, \mathrm{x}==-1, \mathrm{x}==-\mathrm{I}, \mathrm{x}==1]$
sage: sols[4]
... output cut...
IndexError: list index out of range

MAT 305: Mathematical Computing

John Perry

But I want only the number. . .!

Exact solutions to equations Exact solutions Extracting solutions Systems of linear equations

- Every equation has a right hand side
- Use .rhs() command
- "dot" command: append to object

MAT 305: Mathematical Computing

Example

Exact solutions to equations Exact solutions Extracting solutions Systems of linear equations Approximate solutions to equations

```
sage: eq = 4*x**2 - 3*x + 1 == 0
sage: sols = solve([eq],x)
sage: len(sols)
2 (len() gives length of a collection)
sage: x1 = sols[0]
sage: x1
x == -1/8*I*sqrt(7) + 3/8 (oops! want only solution)
sage: x1 = sols[0].rhs()
sage: x1
-1/8*I*sqrt(7) + 3/8

Mathematical Computing

\section*{Let's test solutions}

John Perry

Extract second solution; substitute into equation
```

sage: x2 = sols[1].rhs()
sage: x2
1/8*I*sqrt(7) + 3/8
sage: eq(x=x2)
4*(1/8*I*sqrt(7) + 3/8)^2
- 3/8*I*sqrt(7) - 1/8 == 0
(need to expand product)
sage: expand(eq(x=x2))
0 == 0

```

MAT 305:
Mathematical Computing

John Perry
Exact solutions to equations Exact solutions Extracting solutions Systems of linear equations
- system of linear, multivariate equations
- can always be solved exactly
- zero, one, or infinitely many solutions
- solution is a list of equations

MAT 305: Mathematical Computing

\section*{No solution}

John Perry

\section*{Exact solutions} to equations Exact solutions Extracting solutions Systems of linear equations
sage: \(\operatorname{var}\left({ }^{\prime} y^{\prime}\right)\)
(y)
sage: solve([x + y == 1,
\(\mathrm{x}+\mathrm{y}=0\),
[ \(\mathrm{x}, \mathrm{y}\) ])
... output cut...
[]

\section*{One solution}

Exact solutions to equations Exact solutions Extracting solutions Systems of linear equations
\[
\begin{aligned}
& \text { sage: } \\
& \begin{aligned}
& \text { (z) } \operatorname{var}\left({ }^{\prime} z^{\prime}\right) \\
& \text { sage: } \text { solve }([3 * x-4 * y+z==1, \\
& 2 * x-3 * y+4 * z==2, \\
&7 * x+10 * y-39 * z==1], \\
& {[x, y, z]) } \\
& {[[x==(3 / 2), y==1, z==(1 / 2)]] }
\end{aligned}
\end{aligned}
\]

MAT 305: Mathematical Computing

\section*{Infinitely many solutions}

John Perry
Exact solutions to equations Exact solutions Extracting solutions
Systems of linear equations
\[
\begin{gathered}
\text { sage: solve }([3 * x-4 * y+z==1, \\
\\
\quad 2 * x-3 * y+4 * z==2, \\
\\
\quad-6 * x+8 * y-2 * z==-2] \\
[x, y, z])
\end{gathered}
\]

Mathematical Computing

\section*{r1?!? What is r1?}

John Perry

\section*{\(r 1\) is a parameter that can take infinitely many values}
\[
[[x==13 * r 1-5, y==10 * r 1-4, z==r 1]]
\]
corresponds to
\[
x=13 t-5, \quad y=10 t-4, \quad z=t .
\]

Example
\(t=0\) ?
- \(x=-5, y=-4, z=0\)
- Substitute into system:
\[
\begin{aligned}
3(-5)-4(-4)+0 & =1 \\
2(-5)-3(-4)+4(0) & =2 \\
-6(-5)+8(-4)-2(0) & =-2 .
\end{aligned}
\]

MAT 305: Mathematical Computing

\section*{Extract and test}

John Perry
sage: eq1 \(=3 * x-4 * y+z==1\)
sage: eq2 \(=2 * x-3 * y+4 * z==2\)
sage: eq3 \(=-6 * x+8 * y-2 * z==-2\)
sage: sols \(=\) solve([eq1, eq2, eq3], \([x, y, z])\)

\section*{sols is a list of lists...}
```

sage: sol1 = sols[0]
sage: x1 = sol1[0].rhs()
sage: y1 = sol1[1].rhs()
sage: z1 = sol1[2].rhs()
sage: x1,y1,z1
(13*r2 - 5, 10*r2 - 4, r2)
sage: eq1(x=x1,y=y1,z=z1)
1 == 1

```

MAT 305: Mathematical Computing

John Perry

\section*{Exact solutions} to equations Exact solutions Extracting solutions Systems of linear equations

Approximate solutions to equations

Summary

\title{
Outline
}
(1) Exact solutions to equations Exact solutions Extracting solutions Systems of linear equations
(2) Approximate solutions to equations
(3) Summary

Mathematical Computing

\section*{Why approximate?}
- Exact solutions often... complicated
\(-\frac{1}{2} \cdot \sqrt[3]{\frac{\sqrt{3713}}{54}+\frac{7}{6}} \cdot(1+i \sqrt{3})+\frac{-2+2 i \sqrt{3}}{9} \cdot \sqrt[3]{\frac{\sqrt{3713}}{54}+\frac{7}{6}}\)
- Approximate solutions easier to look at, manipulate -0.8280018073-0.8505454986i
- Approximation often much, much faster!
- except when approximation fails
- bad condition numbers
- rounding errors
- inappropriate algorithm (real solver, complex roots)

MAT 305: Mathematical Computing

John Perry

\section*{The find_root() command}
find_root(equation, xmin, xmax) where
- equation has a root between real numbers \(x \min\) and \(x \max\)
- reports an error if no root exists
- this is a real solver: looks for real roots
- uses Scipy package

MAT 305: Mathematical Computing

\section*{Example}

Exact solutions to equations Exact solutions Extracting solutions Systems of linear equations

Approximate solutions to equations
Summary
sage: find_root \((x * * 5+2 * x+1==0,-10,0)\)
-0.48638903593454297
sage: find_root ( \(\mathrm{x} * * 5+2 * \mathrm{x}+1==0,0,10\) )
... output cut. . .
RuntimeError: f appears to have no zero on the interval

MAT 305: Mathematical Computing
polynomial.roots() ordinarily finds exact roots of a polynomial, along with multiplicities
- reports error if cannot find explicit roots
- complex roots: option ring=CC
- approximate numbers in \(\mathbb{C}\)
- uses Scipy package

Mathematical Computing

\section*{Example}
```

sage: p = x**5+2*x+1
sage: p.roots()
...output cut...
RuntimeError: no explicit roots found
sage: p.roots(ring=CC)
[(-0.486389035934543, 1),
(-0.701873568855862 - 0.879697197929823*I, 1),
(-0.701873568855861 + 0.879697197929823*I, 1),
(0.945068086823134 - 0.854517514439046*I, 1),
(0.945068086823133 + 0.854517514439046*I, 1)]
notice: each root has multiplicity 1

```

MAT 305: Mathematical Computing

John Perry

Exact solutions to equations Exat solutions Extracting solutions Systems of linear equations

Approximate solutions to equations

\section*{Extract and use complex roots}
sage: sols = p.roots(ring=CC)

\section*{sols is a list of tuples (root, multiplicity): need to extract tuple first, then root}
sage: \(\mathrm{x} 0=\) sols[0] want first root
sage: x0
(-0.486389035934543, 1)
oops! I want only the root; I have the tuple!
sage: \(\mathrm{x0}=\mathrm{sols}[0][0] \quad\) root is first element of tuple
sage: x0
-0.486389035934543
sage: x 1 = sols[1] [0]
want second root
sage: x1
\(-0.701873568855862-0.879697197929823 * I\)

MAT 305: Mathematical
Computing
John Perry

Exact solutions to equations
Exact solutions
Extracting solutions
Systems of linear equations

Approximate solutions to equations

Summary

\section*{Outline}
(1) Exact solutions to equations Exact solutions Extracting solutions Systems of linear equations

\section*{(2) Approximate solutions to equations}
(3) Summary

\section*{Summary}
- distinguish \(=\) (assignment) and \(==\) (equality)
- Sage can find exact or approximate roots
- solve() finds exact solutions
- not all equations can be solved exactly
- systems of linear equations always exact
- extract using [ ] and .rhs()
- find_root() approximates real roots on an interval
- error if no roots on interval
- .roots (ring=CC) approximates real and complex roots
- append to polynomial or equation```

