John Perry

Loops

Definite loop

Loop tricks I'c rather you avoid for now

Indefinite loop

c

MAT 305: Mathematical Computing Repeating a task with loops

John Perry

University of Southern Mississippi

Fall 2011

Definite loop

Loop tricks I'd rather you avoid for now

Indefinite loop

Summary

- 1 Loops
- 2 Definite loops
- 3 Loop tricks I'd rather you avoid for now
- 4 Indefinite loops
- **5** Summary

Definite loop

Loop tricks I'd rather you avoid for now

Indefinite loop

Summary

- 1 Loops
- 2 Definite loops
- 3 Loop tricks I'd rather you avoid for now
- 4 Indefinite loops
- **5** Summary

Loop tricks I' rather you avoid for now

Indefinite loop:

Summar

Loops?

• loop: a sequence of statements that is repeated

big time bug: infinite loops

Definite loor

Loop tricks I'd rather you avoid for now

Indefinite loop:

Summary

Why loops?

- like functions: avoid retyping code
 - many patterns repeated
 - same behavior, different data
- unlike functions: easily vary repetitions of code
 - easier than typing a function name 100 times
 - can repeat without knowing number of times when programming

Definite loop

Loop tricks I'd rather you avoid for now

Indefinite loops

Summary

Types of loops

- definite
 - number of repetitions known at beginning of loop
- indefinite
 - number of repetitions not known (even unknowable) at beginning of loop

Definite loor

Loop tricks I'd rather you avoid for now

Indefinite loop

Summary

Types of loops

- definite
 - number of repetitions known at beginning of loop
- indefinite
 - number of repetitions not known (even unknowable) at beginning of loop

Python uses different constructions for each

:. Sage uses different constructions for each

Definite loops

Loop tricks I'c rather you avoid for now

Indefinite loop

Summary

- 1 Loops
- 2 Definite loops
- 3 Loop tricks I'd rather you avoid for now
- 4 Indefinite loops
- **5** Summary

The for command

```
for each in L:
 statement1
 statement2
```

where

- each is an identifier
- *L* is an "iterable collection" (tuples, lists, sets)
- if you modify *each*,
 - corresponding element of *L* does *not* change
 - on next loop, *each* takes next element of *L* anyway

Loop tricks I rather you avoid for now

Indefinite loop:

What does it do?

for each in L:
 statement1
 statement2

. . .

- suppose *L* has *n* elements
- statement1, statement2, etc. are repeated (looped) n times
- on *i*th loop, *each* has the value of *i*th element of *L*

Loop tricks I'c rather you avoid for now

Indefinite loops

Summer

Trivial example

```
sage: for each in [1, 2, 3, 4]:
    print each
```

7

3

4

Loop tricks I'd rather you avoid for now

Indefinite loops

Summary

Less trivial example

Loop tricks I'c rather you avoid for now

Indefinite loops

Summary

What happened?

$$L == [x**2, cos(x), e**x*cos(x)]$$

Indefinite loops

Summary

What happened?

```
L == [x**2, cos(x), e**x*cos(x)]
```

Indefinite loops

Summary

```
What happened?
```

Loop tricks I'c rather you avoid for now

Indefinite loops

Summary

What happened?

```
L == [x**2, cos(x), e**x*cos(x)]

loop 1: each = x**2
    print diff(each) \leadsto 2x

loop 2: each = cos(x)
    print diff(each) \leadsto -sin(x)

loop 3: each = e**x*cos(x)
    print diff(each) \leadsto -e^x*sin(x) + e^x*cos(x)
```

Loop tricks I'd rather you avoid for now

Indefinite loop

5

Summary

Changing each?

Indefinite loop:

Summary

Changing each?

Notice: loop ran 4 times (*L* has 4 elements) even though *each* had value 5

Loop tricks I rather you avoid for now

Indefinite loops

Summary

Changing L?

Don't modify *L* unless you know what you're doing.

Indefinite loops

Summary

Changing L?

Don't modify *L* unless you know what you're doing. Usually, you don't.

sage: L = [1,2,3,4]

sage: for each in L:

L.append(each+1)

Loop tricks I'd rather you avoid for now

Indefinite loops

Summary

Changing L?

Don't modify *L* unless you know what you're doing. Usually, you don't.

sage: L = [1,2,3,4]

sage: for each in L:

L.append(each+1)

...infinite loop!

Loop tricks I'd rather you avoid for now

Indefinite loops

Summary

More detailed example

Given f(x), $a, b \in \mathbb{R}$, and $n \in \mathbb{N}$, estimate $\int_a^b f(x) dx$ using n left Riemann sums.

Loop tricks I' rather you avoid for now

Indefinite loops

Summary

More detailed example

Given f(x), $a, b \in \mathbb{R}$, and $n \in \mathbb{N}$, estimate $\int_a^b f(x) dx$ using n left Riemann sums.

- Excellent candidate for definite loop if n known from outset.
 - Riemann sum: repeated addition: loop!
 - If *n is not* known, can still work, but a function with a loop is better. (Details later.)
- Start with pseudocode...

Loop

Definite loops

Loop tricks I'd rather you avoid for now

Indefinite loop

Summary

Pseudocode for definite loop

```
for counter \in L

loop statement 1

loop statement 2

...

out-of-loop statement 1
```

Loop

Definite loops

Loop tricks I'd rather you avoid for now

Indefinite loop

c

Pseudocode for definite loop

```
for counter \in L

loop statement 1

loop statement 2

...

out-of-loop statement 1
```

Notice:

- indentation ends at end of loop
- ∈, not in (mathematics, not Python)
- no colon

Loop tricks I'd rather you avoid for now

Indefinite loops

Summary

Building pseudocode

Ask yourself:

- What list do I use to repeat the action(s)?
- What do I have to do in each loop?
 - How do I break the task into pieces?
 - Divide et impera! Divide and conquer!

John Perry

Loop

Definite loops

Loop tricks I' rather you avoid for now

Indefinite loops

Summary

Review

How do we estimate limits using left Riemann sums?

Indefinite loops

Summary

Review

How do we estimate limits using left Riemann sums?

$$\int_{a}^{b} f(x) dx \approx \sum_{i=1}^{n} f(x_{i}) \Delta x$$

where

•
$$\Delta x = \frac{b-a}{n}$$

•
$$x_1 = a, x_2 = a + \Delta x, x_3 = a + 2\Delta x, \dots x_n = a + (n-1)\Delta x$$

• short:
$$x_i = a + (i-1)\Delta x$$

Indefinite loops

Summary

Review

How do we estimate limits using left Riemann sums?

$$\int_{a}^{b} f(x) dx \approx \sum_{i=1}^{n} f(x_{i}) \Delta x$$

where

- $\Delta x = \frac{b-a}{n}$
- $x_1 = a, x_2 = a + \Delta x, x_3 = a + 2\Delta x, \dots x_n = a + (n-1)\Delta x$
 - short: $x_i = a + (i-1)\Delta x$

So...

- L = (1, 2, ..., n)
- repeat addition of $f(x_i)\Delta x$
 - use computer to remember previous value and add to it
 - $sum = sum + \dots$

Indefinite loop:

Summary

Pseudocode

this is not given set up *L*—notice no Pythonese *S* must start at 0 (no sum)

determine x_i add to S

Let
$$\Delta x = \frac{b-a}{n}$$

Let $L = (1, 2, ..., n)$
Let $S = 0$
for $i \in L$
 $x_i = a + (i-1)\Delta x$
 $S = S + f(x_i)\Delta x$

Indefinite loops

Summary

Pseudocode

Let
$$\Delta x = \frac{b-a}{n}$$

Let $L = (1, 2, ..., n)$
Let $S = 0$
for $i \in L$
 $x_i = a + (i-1)\Delta x$

this is not given set up L—notice no Pythonese S must start at 0 (no sum)

determine x_i add to S

translates to Sage as...

 $S = S + f(x_i) \Delta x$

now use Pythonese

Definite loops

Loop tricks I'o rather you avoid for now

Indefinite loop

0

```
sage: f = x**2; a = 0; b = 1; n = 3
```

sage: Delta_x =
$$(b - a)/n$$

sage:
$$L = range(1,n+1)$$

$$sage: S = 0$$

$$xi = a + (i - 1)*Delta_x$$

$$S = S + f(x=xi)*Delta_x$$

sage: S

rather you avoid for now

Indefinite loop

Summary

```
Try it!
```

Indefinite loops

Summary

What happened?

L = [1,2,3]

Loop tricks I'd rather you avoid for now

Indefinite loops

Summary

What happened?

L = [1,2,3]
loop 1:
$$i = 1$$

 $xi = a + (i - 1)*Delta_x$
 $\Rightarrow xi = 0 + 0*(1/3) = 0$
S = S + f(x=xi)*Delta_x
 $\Rightarrow S = 0 + f(0)*(1/3) = 0$

Loop tricks I'd rather you avoid for now

Indefinite loops

Summary

What happened?

L = [1,2,3]
loop 1:
$$i = 1$$

 $xi = a + (i - 1)*Delta_x$
 $\Rightarrow xi = 0 + 0*(1/3) = 0$
S = S + f(x=xi)*Delta_x
 $\Rightarrow S = 0 + f(0)*(1/3) = 0$
loop 2: $i = 2$
 $xi = a + (i - 1)*Delta_x$
 $\Rightarrow xi = 0 + 1*(1/3) = 1/3$
S = S + f(x=xi)*Delta_x
 $\Rightarrow S = 0 + f(1/3)*(1/3) = 1/27$

Definite loops

What happened?

L = [1,2,3] loop 1:
$$i=1$$
 $xi = a + (i - 1)*Delta_x$
 $xi = 0 + 0*(1/3) = 0$

S = S + f(x=xi)*Delta_x

 $S = 0 + f(0)*(1/3) = 0$

loop 2: $i=2$
 $xi = a + (i - 1)*Delta_x$
 $xi = 0 + 1*(1/3) = 1/3$

S = S + f(x=xi)*Delta_x

 $S = 0 + f(1/3)*(1/3) = 1/27$

loop 3: $i=3$
 $S = 0 + f(1/3)*(1/3) = 1/27$
 $S = 0 + f(1/3)*(1/3) = 1/27$

c

Try it with larger *n*!

```
sage: f = x**2; a = 0; b = 1; n = 1000
```

sage: Delta_x =
$$(b - a)/n$$

sage:
$$L = range(1,n+1)$$

$$sage: S = 0$$

$$xi = a + (i - 1)*Delta_x$$

 $S = S + f(x=xi)*Delta_x$

C

```
Try it with larger n!
```

```
sage: f = x**2; a = 0; b = 1; n = 1000
```

sage: Delta_x =
$$(b - a)/n$$

sage:
$$L = range(1,n+1)$$

$$sage: S = 0$$

$$xi = a + (i - 1)*Delta_x$$

 $S = S + f(x=xi)*Delta_x$

665667/2000000

correct answer is $\frac{1}{3}$; use round() to see how "close"

MAT 305: Mathematical Computing

John Perry

Loop

Definite loops

Loop tricks I'd rather you avoid for now

Indefinite loop

Summary

Typing and retyping is a pain

Make a function out of it!

algorithm left_Riemann_sum

Loop

Definite loops

Loop tricks I'd rather you avoid for now

Indefinite loop

Summary

Typing and retyping is a pain

```
Make a function out of it! 

algorithm left\_Riemann\_sum 

inputs f, a function on [a,b] \subset \mathbb{R} n \in \mathbb{N}
```

John Perry

Loop

Definite loops

Loop tricks I'd rather you avoid for now

Indefinite loop

Summar

Typing and retyping is a pain

Make a function out of it!

algorithm left_Riemann_sum

inputs

f, a function on $[a,b] \subset \mathbb{R}$ $n \in \mathbb{N}$

outputs

left Riemann sum approximation of $\int_a^b f(x) dx$ w/n rectangles

John Perry

Loop

Definite loops

Loop tricks I'd rather you avoid for now

Indefinite loops

0

Typing and retyping is a pain

```
Make a function out of it!
```

```
algorithm left\_Riemann\_sum
inputs
f, a function on [a,b] \subset \mathbb{R}
n \in \mathbb{N}
```

outputs

left Riemann sum approximation of $\int_a^b f(x) dx$ w/n rectangles

do

Let
$$\Delta x = \frac{b-a}{n}$$

Let $L = (1, 2, ..., n)$
Let $S = 0$
for $i \in L$
 $x_i = a + (i-1)\Delta x$
 $S = S + f(x_i)\Delta x$
return S

don't forget to report the result!

Summary

Translate into Sage code...

...on your own. Raise your hand if you need help.

You should be able to compute:

- left_Riemann_sum(x**2, 0, 1, 3)
- left_Riemann_sum(x**2, 0, 1, 1000)
- ... and obtain the same answers as before.

Summary

Outline

- 1 Loops
- 2 Definite loops
- 3 Loop tricks I'd rather you avoid for now
- 4 Indefinite loops
- **5** Summary

Indefinite loop

C....

Looping through nonexistent lists

- for each in L
 - L an "iterable collection"
- may not want to construct list of *n* elements; merely repeat *n* times
 - for *each* in xrange(*L*) has same effect
 - slightly faster, uses less computer memory

Indefinite loop

Summary

Building lists from lists

Python (Sage) has a handy list constructor

- Suppose *L*_{old} has *n* elements
- Let $L_{\text{new}} = [f(x) \text{ for } x \in L_{\text{old}}]$
 - L_{new} will be a list with n elements
 - $L_{\text{new}}[i] == f(L_{\text{old}}[i])$

Indefinite loops

Summary

```
Example
```

```
sage: L = [x**2 for x in range(10)]
sage: L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
```

Indefinite loops

Summary

Outline

- 1 Loops
- 2 Definite loops
- 3 Loop tricks I'd rather you avoid for now
- 4 Indefinite loops
- **5** Summary

Loop

Definite loop

Loop tricks I' rather you avoid for now

Indefinite loops

Summary

The while command

```
while condition:
statement1
statement2
...
```

where

- statements are executed while condition remains true
- like definite loops, variables in *condition* can be modified
- unlike definite loops, variables in *condition* **should** be modified
- *warning*: statements will *not* be executed if *condition* is false from the get-go

Loop

Definite loop

Loop tricks I'd rather you avoid for now

Indefinite loops

Summary

Pseudocode for indefinite loop

while condition statement1 statement2

. . .

out-of-loop statement 1

Indefinite loops

Summary

Pseudocode for indefinite loop

while condition statement1 statement2

out-of-loop statement 1

Notice:

- indentation ends at end of loop
- no colon

0

```
sage: f = x**10
sage: while f != 0:
         f = diff(f)
         print f
10*x^9
90*x^8
720*x^7
5040*x^6
30240*x^5
151200*x^4
604800*x^3
1814400*x^2
3628800*x
3628800
```

Loop

Definite loop

Loop tricks I'm rather you avoid for now

Indefinite loops

Summary

More interesting example

Use the Method of Bisection to approximate a root of $\cos x - x$ on the interval [0, 1], correct to the hundredths place.

Indefinite loops

Summary

More interesting example

Use the Method of Bisection to approximate a root of $\cos x - x$ on the interval [0, 1], correct to the hundredths place. *Hunh?!?*

Summary

Method of Bisection?

The Method of Bisection is based on:

Theorem (Intermediate Value Theorem)

If

- f is a continuous function on [a, b], and
- $f(a) \neq f(b)$,

then

- for any C between f(a) and f(b),
- $\exists c \in (a,b)$ such that f(c) = C.

Summary

Method of Bisection?

The Method of Bisection is based on:

Theorem (Intermediate Value Theorem)

If

- f is a continuous function on [a,b], and
- $f(a) \neq f(b)$,

then

- for any C between f(a) and f(b),
- $\exists c \in (a,b)$ such that f(c) = C.

Upshot: To find a root of a continuous function f, start with two x values a and b such that f(a) and f(b) have different signs, then bisect the interval.

Summary

Back to the example...

Given

$$f(x) = \cos x - x$$

- continuous because it is a difference of continuous functions
- a = 0 and b = 1
 - f(a) = 1 > 0
 - $f(b) \approx -0.4597 < 0$

Intermediate Value Theorem applies: can start Method of Bisection.

Loop

Definite loop

Loop tricks I'd rather you avoid for now

Indefinite loops

Summary

How to solve it?

Idea: Interval endpoints *a* and *b* are not close enough as long as their digits differ through the hundredths place.

Indefinite loops

Summary

How to solve it?

Idea: Interval endpoints *a* and *b* are not close enough as long as their digits differ through the hundredths place.

Application: While their digits differ through the hundredths place, halve the interval.

Indefinite loops

Summary

How to solve it?

Idea: Interval endpoints *a* and *b* are not close enough as long as their digits differ through the hundredths place.

Application: While their digits differ through the hundredths place, halve the interval.

"Halve" the interval? Pick the half containing a root!

John Perry

Loop

Definite loop

Loop tricks I' rather you avoid for now

Indefinite loops

Summary

Pseudocode

 ${\bf algorithm}\ method_of_bisection$

Loop

Definite loop

Loop tricks I'c rather you avoid for now

Indefinite loops

Summary

Pseudocode

algorithm $method_of_bisection$ inputs f, a continuous function $a, b \in \mathbb{R}$ such that $a \neq b$ and f(a) and f(b) have different signs

John Perry

Loops

Definite loop

Loop tricks I'd rather you avoid for now

Indefinite loops

Summary

Pseudocode

algorithm method_of_bisection

inputs

f, a continuous function

 $a, b \in \mathbb{R}$ such that $a \neq b$ and f(a) and f(b) have different signs

outputs

 $c \in \mathbb{R}$ such that $f(c) \approx 0$ and c accurate to hundredths place

Summary

Pseudocode

```
algorithm method of bisection
inputs
  f, a continuous function
  a, b \in \mathbb{R} such that a \neq b and f(a) and f(b) have different signs
outputs
  c \in \mathbb{R} such that f(c) \approx 0 and c accurate to hundredths place
do
   while the digits of a and b differ through the hundredths
     Let c = \frac{a+b}{2}
     if f(a) and f(c) have the same sign
                                                          Interval now \left(\frac{a+b}{2},b\right)
        Let a = c
     else if f(a) and f(c) have opposite signs
                                                          Interval now \left(a, \frac{a+b}{2}\right)
        Let b = c
     else
                                                          we must have f(c) = 0
        return c
```

return *a*, rounded to hundredths place

Indefinite loops

Summary

Try it!

```
sage: def method_of_bisection(f,x,a,b):
    while round(a,2) != round(b,2):
```

Loop tricks I'c

Indefinite loops

Summary

Try it!

```
sage: def method_of_bisection(f,x,a,b):
    while round(a,2) != round(b,2):
    c = (a + b)/2
```

Indefinite loops

Summary

Try it!

```
sage: def method_of_bisection(f,x,a,b):
    while round(a,2) != round(b,2):
        c = (a + b)/2
        if f(x=a)*f(x=c) > 0:
            a = c
        elif f(x=a)*f(x=c) < 0:
            b = c
        else:
            return c
        return round(a,2)</pre>
```

```
def method_of_bisection(f,x,a,b):
sage:
         while round(a,2) != round(b,2):
           c = (a + b)/2
           if f(x=a)*f(x=c) > 0:
             a = c
           elif f(x=a)*f(x=c) < 0:
             b = c
           else:
             return c
         return round(a,2)
       method_of_bisection(cos(x)-x,x,0,1)
0.74
```

sage:

Indefinite loop:

Summary

Outline

- 1 Loops
- 2 Definite loops
- 3 Loop tricks I'd rather you avoid for now
- 4 Indefinite loops
- **5** Summary

Indefinite loops

Summary

Summary

Two types of loops

- definite: *n* repetitions known at outset
 - for $i \in L$
 - list *L* of *n* elements controls loop
 - don't modify L
- indefinite: number of repetitions not known at outset
 - while condition
 - Boolean *condition* controls loop