MAT 305:
Mathematical
Computing
John Perry

MAT 305: Mathematical Computing Decision-making

John Perry

University of Southern Mississippi
Fall 2011

MAT 305: Mathematical Computing

John Perry

Decision-
making
Boolean statements

Outline

(1) Decision-making
(2) Boolean statements
(3) Having said all that...
(4) Summary

MAT 305: Mathematical
Computing
John Perry

Decisionmaking

Boolean statements

Outline

(1) Decision-making

(2) Boolean statements

(3) Having said all that...
(4) Summary

MAT 305: Mathematical Computing

John Perry

Decisionmaking
Boolean statements

Decision making?

 A function may have to act in different ways, depending on the arguments.MAT 305: Mathematical Computing

John Perry

$$
f(x)= \begin{cases}f_{1}(x), & x \in\left(a_{0}, a_{1}\right) \\ f_{2}(x), & x \in\left[a_{1}, a_{2}\right)\end{cases}
$$ Mathematical Computing

John Perry

Decision making?

A function may have to act in different ways, depending on the arguments.

Example
Deciding concavity:
If $f^{\prime \prime}(a)>0$, then f is concave up at $x=a$; if $f^{\prime \prime}(a)<0$, then f is concave down at $x=a$; if $f^{\prime \prime}(a)=0$, then a is an inflection point of f.

Mathematical Computing

if statements

if condition:
if-statement1
if-statement 2
non-if statement1
where

- condition: expression that evaluates to True or False
- condition True? if-statement1, if-statement2, ... performed
- proceed eventually to non-if statement1
- condition False? if-statement1, if-statement2, ... skipped
- proceed immediately to non-if statement1

MAT 305:
Mathematical Computing

Example

John Perry

Decision-

 making```
sage: \(f(x)=\cos (x)\)
sage: \(\operatorname{ddf}(x)=\operatorname{diff}(f, 2)\)
sage: if ddf(3*pi/4) > 0 :
 print 'concave up at', \(3 * \mathrm{pi} / 4\)
concave up at \(3 / 4 *\) pi
```

Mathematical Computing

John Perry
if condition:
if-statement1
else:
else-statement1
non-if statement1
where

- condition True? if-statement1, ... performed
- else-statement1, ... skipped
- condition False? else-statement1, ... performed
- statement1, ... skipped
- proceed sooner or later to non-if statement1

MAT 305: Mathematical Computing

## if-elif-else statements

John Perry
Decisionmaking
Boolean statements

MAT 305: Mathematical Computing

John Perry

Notice:

- indentation
- no colons
- else if, not elif


## Pseudocode for if-elif-else

else
else-statement1

```
if condition1
 if-statement1
else if condition2
 elseif1-statement1
else if condition3
 elseif2-statement1
 ...
```

    . . .
    MAT 305:
Mathematical Computing

John Perry

## Example: concavity

Write a Sage function that tests whether a function $f$ is concave up or down at a given point. Have it return the string 'concave up', 'concave down', or 'neither'.

MAT 305: Mathematical Computing

John Perry

## Example: concavity

Write a Sage function that tests whether a function $f$ is concave up or down at a given point. Have it return the string 'concave up', 'concave down', or 'neither'.

Different choices $\Longrightarrow$ need to decide! $\Longrightarrow$ if

## Example: concavity

Write a Sage function that tests whether a function $f$ is concave up or down at a given point. Have it return the string 'concave up', 'concave down', or 'neither'.

Different choices $\Longrightarrow$ need to decide! $\Longrightarrow$ if
Start with pseudocode.

- inputs needed?
- output expected?
- what to do?
- step by step
- Divide et impera! Divide and conquer!

MAT 305: Mathematical Computing

John Perry

Decisionmaking

Boolean statements

## Pseudocode for Example

MAT 305: Mathematical Computing

John Perry

Decisionmaking

Boolean statements

## Pseudocode for Example

algorithm check_concavity inputs $a \in \mathbb{R}$
$f(x)$, a twice-differentiable function at $x=a$ outputs Mathematical Computing

John Perry

## Pseudocode for Example

algorithm check_concavity
inputs
$a \in \mathbb{R}$
$f(x)$, a twice-differentiable function at $x=a$

## outputs

'concave up' if $f$ is concave up at $x=a$
'concave down' if $f$ is concave down at $x=a$
'neither' otherwise
do

Mathematical Computing

John Perry

## Pseudocode for Example

algorithm check_concavity
inputs
$a \in \mathbb{R}$
$f(x)$, a twice-differentiable function at $x=a$
outputs
'concave up' if $f$ is concave up at $x=a$
'concave down' if $f$ is concave down at $x=a$
'neither' otherwise
do
if $f^{\prime \prime}(a)>0$
return 'concave up'
else if $f^{\prime \prime}(a)<0$
return 'concave down'
else
return 'neither' Mathematical Computing

## Try it!

John Perry

Decisionmaking
ddf = diff(f, x, 2)
if $\operatorname{ddf}(x=a)>0$ :
return 'concave up'
elif ddf( $\mathrm{x}=\mathrm{a}$ ) < 0 :
return 'concave down'
else: return 'neither'

## Try it!

John Perry
sage: def check_concavity(a, f, x):

$$
\operatorname{ddf}=\operatorname{diff}(f, x, 2)
$$

$$
\text { if } \operatorname{ddf}(x=a)>0 \text { : }
$$

return 'concave up'
elif ddf( $x=a$ ) < 0 : return 'concave down'
else:
return 'neither'
sage: check_concavity(3*pi/4, cos(x), x)
'concave up'
sage: check_concavity(pi/4, cos(x), x)
'concave down'

MAT 305: Mathematical Computing

John Perry

## Decision-

 makingMAT 305: Mathematical Computing

John Perry

## Decision-

 making
## Example: piecewise function

Write a function whose input is any $x \in \mathbb{R}$ and whose output is

$$
f(x)= \begin{cases}1-x^{2}, & x<0 \\ 0, & x=0 \\ x^{2}-1, & x>0\end{cases}
$$

Three different choices $\Longrightarrow$ need to make a decision $\Longrightarrow$ if

MAT 305: Mathematical Computing

John Perry

Boolean statements inputs

MAT 305: Mathematical Computing

John Perry

## Pseudocode for example

algorithm piecewise $f$ inputs $a \in \mathbb{R}$
outputs

MAT 305: Mathematical Computing

John Perry
$a \in \mathbb{R}$
outputs
$f(a)$, where $f$ is defined as above
do

## Pseudocode for example

algorithm piecewise $f$
$a \in \mathbb{R}$
outputs
$f(a)$, where $f$ is defined as above
do

MAT 305: Mathematical Computing

John Perry

## Pseudocode for example

algorithm piecewise $f$ inputs
$a \in \mathbb{R}$
outputs
$f(a)$, where $f$ is defined as above
do
if $a<0$
return $1-a^{2}$

MAT 305: Mathematical Computing

John Perry inputs
$a \in \mathbb{R}$
outputs
$f(a)$, where $f$ is defined as above
do
if $a<0$
return $1-a^{2}$
else if $a=0$
return 0

## Pseudocode for example

algorithm piecewise $f$

MAT 305: Mathematical Computing

John Perry
inputs
$a \in \mathbb{R}$
outputs
$f(a)$, where $f$ is defined as above
do
if $a<0$
return $1-a^{2}$
else if $a=0$
return 0
else
return $a^{2}-1$

## Pseudocode for example

algorithm piecewise $f$

MAT 305:
Mathematical Computing

John Perry

Decisionmaking
Boolean statements

$$
\text { if } a<0 \text { : }
$$

$$
\text { return } 1 \text { - a**2 }
$$

elif a == 0:

$$
\text { return } 0
$$

else:

$$
\text { return } \mathrm{a} * * 2-1
$$

sage: piecewise_f(3)
8

MAT 305: Mathematical Computing

John Perry

## Decision-

 makingBoolean statements


Mathematical Computing

John Perry

## Decision-

 making
## It gets worse, too

How do we handle a piecewise function defined over more complicated intervals?

Example
Suppose

$$
g(x)= \begin{cases}3 x, & x \in[0,2) \\ -\frac{x}{3}+\frac{20}{3}, & x \in[2,20) \\ 0, & x \geq 20\end{cases}
$$

How do we define this in Sage?

MAT 305: Mathematical Computing

John Perry

## Pseudocode deceptively easy

algorithm piecewise_g inputs
$a \in[0, \infty)$
outputs
$g(a)$, where $g$ is defined as above
do
if $a \in[0,2)$
return $3 a$
else if $a \in[2,20)$
return $-\frac{a}{3}+\frac{20}{3}$
else
return 0

Mathematical Computing

John Perry

## Pseudocode deceptively easy

algorithm piecewise_g
inputs
$a \in[0, \infty)$
outputs
$g(a)$, where $g$ is defined as above
do
if $a \in[0,2)$
return $3 a$
else if $a \in[2,20)$
return $-\frac{a}{3}+\frac{20}{3}$
else
return 0
$\ldots$ but how does does Sage decide $a \in\left[x_{1}, x_{2}\right)$ ?!?

MAT 305: Mathematical
Computing
John Perry

## Decision-

making
Boolean statements

Having said all that. .

Summary

# Outline 

(1) Decision-making
(2) Boolean statements

## (3) Having said all that...

(4) Summary

MAT 305: Mathematical Computing

John Perry

Decisionmaking

Boolean statements

Boolean algebra operates on only two values: $\{$ True, False $\}$. ... or $\{1,0\}$ if you prefer $\ldots$ or $\{$ Yes, No $\}$ if you prefer Mathematical Computing

John Perry

## Boolean algebra

Boolean algebra operates on only two values: $\{$ True, False $\}$. $\ldots$ or $\{1,0\}$ if you prefer $\ldots$ or $\{$ Yes, No $\}$ if you prefer
Basic operations:

- $\operatorname{not} x$
- True iff $x$ is False
- $x$ and $y$
- True iff both $x$ and $y$ are True
- $x$ or $y$
- True iff
- $x$ is True; or
- $y$ is True; or
- both $x$ and $y$ are True

MAT 305: Mathematical Computing

John Perry

## Decision-

making
Boolean statements

Having said all that.

Summary

## Example: and, or

sage: $5<4$
False

```
sage: (5 > 4) or (5 < 4)
```

True because at least one is True $(5>4)$
sage: $(5>4)$ and $(5<4)$
False

MAT 305: Mathematical Computing

## Example: not

MAT 305: Mathematical Computing

John Perry
Recall: $=$ and $==$ are not the same

- $\mathrm{x}=\mathrm{y}$ assigns value of y to x
- $\mathrm{x}==\mathrm{y}$ compares values of $\mathrm{x}, \mathrm{y}$, reports True or False Mathematical Computing

John Perry

## Equality and inequalities

Recall: $=$ and $==$ are not the same

- $\mathrm{x}=\mathrm{y}$ assigns value of y to x
- $x==y$ compares values of $x, y$, reports True or False

For inequalities,

- x != y compares $\mathrm{x}, \mathrm{y}$
- True iff not ( $\mathrm{x}==\mathrm{y}$ )
- $\mathrm{x}>\mathrm{y}, \mathrm{x}<\mathrm{y}$ have usual meanings Mathematical Computing

John Perry

## Equality and inequalities

Recall: $=$ and $==$ are not the same

- $\mathrm{x}=\mathrm{y}$ assigns value of y to x
- $\mathrm{x}==\mathrm{y}$ compares values of $\mathrm{x}, \mathrm{y}$, reports True or False

For inequalities,

- x != y compares $\mathrm{x}, \mathrm{y}$
- True iff not ( $\mathrm{x}==\mathrm{y}$ )
- $\mathrm{x}>\mathrm{y}, \mathrm{x}<\mathrm{y}$ have usual meanings
- $x \geq y$ ? use $\mathrm{x}>=\mathrm{y}$
- True iff not ( $\mathrm{x}<\mathrm{y}$ )
- $x \leq y$ ? use $\mathrm{x}<=\mathrm{y}$
- True iff not ( $\mathrm{x}>\mathrm{y}$ )

MAT 305: Mathematical Computing

John Perry

## Decision-

making
Boolean statements

## Example

Suppose

$$
g(x)= \begin{cases}3 x, & x \in[0,2) \\ -\frac{x}{3}+\frac{20}{3}, & x \in[2,20) \\ 0, & x \geq 20\end{cases}
$$

How do we define this in Sage? Using Boolean algebra, the pseudocode (and Python code) becomes much simpler.

MAT 305: Mathematical Computing

John Perry

Decisionmaking

Boolean statements

## Pseudocode, again

algorithm piecewise_g
inputs
$a \in[0, \infty)$
outputs
$g(a)$, where $g$ is defined as above do
if $a \in[0,2)$ return $3 a$
else if $a \in[2,20)$ return $-\frac{a}{3}+\frac{20}{3}$ else
return 0

## Pseudocode, again

algorithm piecerwise $g$
inputs
$a \in[0, \infty)$
outputs
$g(a)$, where $g$ is defined as above
do
if $a \in[0,2)$ return $3 a$
else if $a \in[2,20)$ return $-\frac{a}{3}+\frac{20}{3}$
else
return 0
... but how does does Sage decide $a \in\left[x_{1}, x_{2}\right)$ ?!? use $a \geq x_{1}$ and $a<x_{2}$ !

MAT 305: Mathematical Computing

## Sage code

John Perry

## Decision-

making
Boolean statements
sage: def piecewise_g(a): if $(a>=0)$ and $(a<2)$ : return $3 * a$ elif $(\mathrm{a}>=2)$ and $(\mathrm{a}<20)$ : return $-a / 3+20 / 3$ else: return 0

## Sage code

John Perry

## Decision

making
Boolean
statements

$$
\begin{aligned}
& \text { sage: def piecewise_g }(\mathrm{a}): \\
& \text { if }(\mathrm{a}>=0) \text { and }(\mathrm{a}<2): \\
& \quad \text { return } 3 * a \\
& \text { elif }(\mathrm{a}>=2) \text { and }(\mathrm{a}<20): \\
& \quad \text { return }-\mathrm{a} / 3+20 / 3 \\
& \text { else: } \\
& \quad \text { return } 0
\end{aligned}
$$

Much easier to look at.

MAT 305: Mathematical Computing

## Voilà!

John Perry

## Decision-

making
Boolean statements
sage: def piecewise_g(a): ...
sage: pgplot = plot(piecewise_g, 0, 25)
sage: show(pgplot, aspect_ratio=1)


MAT 305: Mathematical
Computing
John Perry

## Decision-

making
Boolean
statements
Having said all that...

Summary

# Outline 

(1) Decision-making

## (2) Boolean statements

## (3) Having said all that...

(4) Summary Mathematical Computing

John Perry

$$
g(x)= \begin{cases}3 x, & x \in[0,2) \\ -\frac{x}{3}+\frac{20}{3}, & x \in[2,20) \\ 0, & x \geq 20\end{cases}
$$

What if $a<0$ ?

- $g(a)$ undefined, but...
- function returns answer!
sage: piecewise_g(-1)
0

Think about

- cause?
- fix?

MAT 305: Mathematical Computing

John Perry

## Sage has a piecewise() command...

## Decision-

making
Boolean statements
piecewise( $\left.\left[\left[\left(a_{1}, b_{1}\right), f_{1}\right],\left[\left(a_{2}, b_{2}\right), f_{2}\right], \ldots\right]\right)$ where

- $a_{i}, b_{i} \in \mathbb{R}$
- $f_{i}$ describes function on interval $\left(a_{i}, b_{i}\right)$

MAT 305:
Mathematical Computing

## ...so it's actually a little easier

sage: piecewise_g = piecewise([[(-3,1), $x * * 2]$, $[(2,5), x]])$
sage: plot(piecewise_g, xmin=-3, xmax=3)


MAT 305: Mathematical
Computing
John Perry

Decision-
making
Boolean statements

Having said all that. .

Summary

# Outline 

(1) Decision-making

## (2) Boolean statements

## (3) Having said all that...

## (4) Summary

## Summary

John Perry

- Decision making accomplished via if-elif-else
- pseudocode: if, else if, else
- Mathematical examples abound!
- testing properties of functions
- piecewise functions
- Boolean algebra helps create conditions for if and elif
- and, or, not
- <=, !=, >=

