MAT 305:
Mathematical
Computing

John Perry
Background

Cython

Summary

MAT 305: Mathematical Computing
Cython

John Perry

University of Southern Mississippi

Fall 2011

Outline

@ Background
9 CythOn

© Summary

(O «Fr <=»

«E>»

Q>

Outline

0 BaCkgrOund
® Cython

© Summary

PR IRT-

it
v

Q>

MAT 305:
Mathematical

i Mandelbrot Numbers
John Perry
Background ° Let
e ccC

o f:C—Cbyf(z)=7*+c
e Let u:C—> Nt by
u(c)=n <= nsmallest such that an (O)‘ >4
In other words, we count how many times we apply £, , before
result has size greater than 4.

Definition

e u(c) is the Mandelbrot number of c.
o If u(c) = oo then c is in the Mandelbrot set.

MAT 305:
Mathematical

Computing EXamples
John Perry
Example
Background
p()=3

f0)=0"+1=1
fAO)=f(1)=1+1=2
£0)=f02)=22+1=5.

MAT 305:
Mathematical

G Examples
Jomieey Example
Btz u(1)=3
AO@)=0"+1=1
RO=f1)=1+1=2
FO=f@)=2+1=5.
Example
p(1) =00

MAT 305:
Mathematical
Computing

John Perry

Background

Cool pictures

MAT 305:
Mathematical

Computing Cool piCtureS

John Perry

Background

MAT 305:
Mathematical
Computing

John Perry

Background

Cool pictures

MAT 305:
Mathematical
Computing

John Perry

Background

Cool pictures

MAT 305:
Mathematical
Computing

John Perry

Background

Cool pictures

MAT 305:
Mathematical
Computing

John Perry

Background

Cool pictures

MAT 305:
Mathematical
Computing

John Perry

Background

Cool pictures

MAT 305:
Mathematical
Computing

John Perry

Background

Cool pictures

MAT 305:
Mathematical
Computing

John Perry

Background

Challenge!

How to do this?

e cnotinsetif lim V" (O)‘ > 4.
n—oo [€

e We can’t check lim
n—oo

7 (O)) for most c.

MAT 305:
Mathematical
Computing

John Perry

Background

How to do this?

Challenge!
e cnotin setif lim M” (O)‘ > 4.

o We can’t check lim |f” (O)) for most c.
n—oo| €

Workaround
o Let NeNT be “big”.
o here, “big” can be as small as 100 or even 10.

o If u(c)> N, we “pretend” ¢ in Mandelbrot set.

e Idea of precision: color ¢ according to u(c)

MAT 305:
Mathematical
Computing

John Perry

Background

Pseudocode

algorithm Mandelbrot Number
inputs
ceC
NeN*
outputs
min (14(0),)
do
letz=0
letn=1
while |zl <4and n <N
letz=2"4c¢
increment 7
return n

MAT 305:
Mathematical
Computing

John Perry

Background

Pseudocode

algorithm Mandelbrot Number
inputs
ceC
NeN*
outputs
min (14(0),)
do
letz=0
letn=1
while |zl <4and n <N
letz=2"4c¢
increment 7
return n

...of course, a lot more is needed to make a picture

MAT 305:
Mathematical
Computing

John Perry

Background

First sage implementation

® Download

Python implementation of Mandelbrot

® Attach (command-line, not worksheet)

sage:

® Run

sage:

O Sce

sage:

attach mandelbrot_mat305.py

M, im = mandelbrot(optional_ymin=-1.0)

im.show()

MAT 305:
Mathematical
Computing

John Perry

Background

It’s too slow.

Problem

We can fix this.
We have the technology.

Better, stronger, faster. ..

MAT 305:
Mathematical
Computing

John Perry

Background

Second sage implementation

® Download

Cython implementation of Mandelbrot

® Attach (command-line, not worksheet)

sage:

® Run

sage:

O Sce

sage:

attach mandelbrot_mat305.pyx

M, im = mandelbrot(optional_ymin=-1.0)

im.show()

Outline

o BackgrOUn d
@ Cython

© Summary

PR IRT-

it
v

Q>

MAT 305:
Mathematical

o Compiled v. Interpreted
John Perr 1
v programming
Cython

Recall from textbook:

e in interpreted software:
o computer reads one line of program
o translates it to machine code

o executes it, forgets translation
e repeat as necessary

e in compiled software:

computer reads entire program
translates it to machine code once
e saves translation to memory or file
e executes many times

Sage v. Python v. Cython

e Sage is built using Python

DA

MAT 305:
Mathematical

Compuring Sage v. Python v. Cython
John Perry
Cython e Sage is built using Python

e Python is interpreted

o facilities for fast, efficient, elegant programming
 many operations still slow
o variable’s type can change

MAT 305:
Mathematical

Compuring Sage v. Python v. Cython
John Perry
Cython e Sage is built using Python

e Python is interpreted

o facilities for fast, efficient, elegant programming
 many operations still slow
o variable’s type can change

e Cython is compiled

e project in development

 works with most Python constructs

e not standalone (runs w/in Python interpreter)
e variable’s type can be unchangeable

MAT 305:
Mathematical
Computing

John Perry

Cython

Type?

A variable’s “type” indicates the kind of data it contains
e integers, rounded numbers, strings, . ..

Python variables can contain “any data”

Example

sage: a = 2

sage: a = ’hello’
sage: a = 3.0%x%5

MAT 305:
Mathematical

Computing Type ?

John Perry

Cython

You cannot use untyped variables in “strongly typed” languages
In C, for example,
void main() {
a = 2;
}

... generates a compiler error:

test.c:2: error: ‘a’ undeclared (first use in
this function)

MAT 305:
Mathematical

Computing Type ?

John Perry

Cython . .
" You cannot abuse typed variables in “strongly typed” languages

In C, for example,
void main() {
int a = 2;
a = ’hello”’;
}

... generates a compiler warning:

test.c:3: warning: assignment makes integer from
pointer without a cast

MAT 305:
Mathematical

Computing Type ?
John Perry
Cython You cannot redefine typed variables in “strongly typed” languages

In C, for example,

void main() {
int a = 2;
char *a = ’hello’’;

X
... generates a compiler error:

test.c:3: error: conflicting types for ‘a’
test.c:2: error: previous definition of ‘a’ was
here

MAT 305:
Mathematical
Computing

John Perry

Cython

Type?

Declaring a variable’s type has advantages and disadvantages
Disadvantages

e Can be harder to read or work in interpreted languages

e Type often inferred easily or known from context

e x = 2.0 seems relatively clear

Advantages

¢ Type known => compiler doesn’t have to guess
e Doyoumean2€7,2€Q,2€R,2€C,...?

o Identifying type at compile time? faster run time!

MAT 305:
Mathematical

ot Cython’s approach

John Perry

Cython

e end sage file with . pyx (not .py)

e declare types of functions, variables when you want to

e can leave some undeclared

e declare functions w/cpdef <type> <name>(...)
or cdef <type> <name>(...)
(if you don’t want to call from Python)

o declare variables w/cdef <type> <name>

MAT 305:
Mathematical
Computing

John Perry

Cython

Types available?

e Ctypes

e int, float, struct
e pointers: T*, T**, etc.

e manage your own memory!
e Python types
o list, set, tuple, string, dict, ...
e Sage objects

o somewhat complicated, see me if you need it

MAT 305:
Mathematical

Computing Compare

John Perry

Cython

In mandelbrot.py

def compute_mandelbrot_iterates(xmin, ymin, \
xsteps, ysteps, max_n, dx, dy):
M = [[-1 for j in xrange(xsteps)]
for i in xrange(ysteps)]:

MAT 305:
Mathematical
Computing

John Perry

Cython

Compare

In mandelbrot.pyx

cdef list compute_mandelbrot_iterates(float xmin, \

float ymin, int xsteps, int ysteps, \
int max_n, float dx, float dy):

cdef int i, j, n

cdef float x, y, x0, yO, xtemp

cdef list M = [[-1 for j in xrange(xsteps)] \
for i in xrange(ysteps)]

for i in xrange(ysteps):

MAT 305:
Mathematical
Computing

John Perry

Cython

In the worksheet

You can compile the Sage code in any cell by starting with
%cython

MAT 305:
Mathematical
Computing

John Perry

Cython

Visualizing the improvement

You can see the C source code produced, along with an
indication of Python-intensive lines

e command line: sage -cython -a filename

o worksheet: after entering cell, click on link labeled,
...spyx.html

MAT 305:
Mathematical
Computing

John Perry

Cython

Example: Python

20: def compute_mandelbrot_iterates(xmin, ymin, \

21: Xsteps, ysteps, max_n, dx, dy):

22: "t

23: Computes an array ~“M~ of integers constituting

24: the number of iterations before the complex number

25: at the corresponding location was determined not

26: to be in the Mandelbrot set.

27:

28:

29: X ymin®® —-

30: The lower left corner of the part of the complex plane

31: that we want to graph. The horizontal numbers are real parts;
32: the verical numbers are complex parts.

33: * “"xsteps™”, T ysteps T -

34: How many steps to travel the horizontal and vertical directions.
35: * “"max n”7 --

361 How many times to apply the iteration before assuming the number
37: is in the Mandelbrot set.

38: * TtdxTT, TUd

39: How far to travel in the horizontal and vertical directions on each step.
40: OUTPUT: :

41z * "M -

42: “M[i] [3] * corresponds to the number of times the iteration was applied
43: to location ~“xmin + i*dx™", “Tymin + jrdy .

44: e

45% M = [[-1 for j in xrange(xsteps)] for i in xrange(ysteps)]

462 for i in xrange(ysteps):

47: if i % 50 == 0: print "row", i, "out of", ysteps

48: for j in xrange(xsteps):

49: n=20

50: x0 = xmin + j * dx

S y0 = ymin + i * dy

52: X = D D

531 y =

54: wh;ls (x*x + y*y <= 4.0) and n <= max_n:

551 xtemp = x*x - y*y + x0

561 Yy = 2.0%x*y + y0

57: x = xtemp

58: n +=1

59: M[i][j] = n

60: return M

MAT 305:
Mathematical
Computing

John Perry

Cython

Example: Cython

25: cdef list compute_mandelbrot_iterates(float xmin, float ymin, \

261 int xsteps, int ysteps, int max_n, float dx, float dy):

27: pren

28: Computes an array ~~M ~ of integers constituting

29: the number of iterations before the complex number

30: at the corresponding location was determined not

31: to be in the Mandelbrot set.

32:

33: INPUT: :

34: * “Txmin™, ~ymin®"

35: The lower left corner of the part of the complex plane

36: that we want to graph. The horizontal numbers are real parts;
37: the verical numbers are complex parts.

38: * ““xsteps ", " ysteps”

39: How many steps to travel the horizontal and vertical directions.
401 * ““max_n’" -

41z How many times to apply the iteration before assuming the number
42: is in the Mandelhrot set.

43: * “tdx™t, “td

44z How far to travel in the horizontal and vertical directions on each step.
45: OUTPUT

463 'M"

47: M[l][]]“ corresponds to the number of times the iteration was applied
481 to location ““xmin + i*dx ", ““ymin + j*dy .

49: A

50: cdef int i, j, n

51z cdef float x, y, X0, y0, xtemp

521 cdef list M = [[-1 for j in xrange(xsteps)] for i in xrange(ysteps)]
53: for i in xrange(ysteps):

54: if i % 50 == 0: print "row", i, "out of", ysteps

551 for j in xrange(xsteps):

56¢ n=20

57: X0 = xmin + j * dx

581 y0 = ymin + i * dy

59: x = 0.0

60: = 0.0

61: while (x*x + y*y <= 4.0) and n <= max_n:

62: t = x*x - y*y + x0

63: y = 2.0%x*y + y0

641 xtemp

65:

66: =n

67: return M

MAT 305:
Mathematical
Computing

John Perry

Cython

...and a lot more, too!

e linking to code written in C, C++, other languages
e extending Python, Sage w/efficient data types, routines

e & more!

Outline

o BackgrOUnd
@ Cython

© Summary

PR IRT-

it
v

Q>

MAT 305:
Mathematical
Computing

John Perry

Summary

Summary

o Compilation can improve performance of code
e Sage uses Cython to compile code

L on can use data es to improve performance
Cyth data types to improve perf

	Background
	Cython
	Summary

