MAT 305:
Mathematical Computing

John Perry

Loops
Definite loops
Loop tricks I'd
rather you avoid for now
Indefinite loops
Summary

MAT 305: Mathematical Computing
 Lecture 8: Loops in Sage

John Perry

University of Southern Mississippi
Fall 2009

MAT 305: Mathematical Computing
(3) Loop tricks I'd rather you avoid for now
(4) Indefinite loops
(5) Summary

You should be in worksheet mode to repeat the examples.

MAT 305: Mathematical
Computing
John Perry

Loops
Definite loops
Loop tricks I'd
rather you avoid for now

Indefinite loops
Summary

(1) Loops

(2) Definite loops

(3) Loop tricks l'd rather you avoid for now
(4) Indefinite loops
(5) Summary

Outline

Loops?

John Perry

Loops
Definite loops
Loop tricks I'd
rather you

- loop: a sequence of statements that is repeated
- big time bug: infinite loops

Why loops?

- like functions: avoid retyping code
- many patterns repeated
- same behavior, different data
- unlike functions: easily vary repetitions of code
- easier than typing a function name 100 times
- can repeat without knowing number of times when programming

MAT 305: Mathematical Computing

Types of loops

- definite
- number of repetitions known at beginning of loop
- indefinite
- number of repetitions not known (even unknowable) at beginning of loop

Types of loops

- definite
- number of repetitions known at beginning of loop
- indefinite
- number of repetitions not known (even unknowable) at beginning of loop

Python uses different constructions for each
\therefore Sage uses different constructions for each

MAT 305: Mathematical
Computing
John Perry

Loops
Definite loops
Loop tricks I'd
rather you avoid for now

Indefinite loops
Summary
(1) Loops
(2) Definite loops
(3) Loop tricks I'd rather you avoid for now
(4) Indefinite loops
(5) Summary

Outline

MAT 305: Mathematical Computing

The for command

for each in L : statement1
statement 2
...
where

- each is an identifier
- L is an "iterable collection" (tuples, lists, sets)
- if you modify each,
- corresponding element of L does not change
- on next loop, each takes next element of L anyway

MAT 305: Mathematical Computing

What does it do?

$$
\begin{aligned}
& \text { for each in } L \text { : } \\
& \text { statement } 1 \\
& \text { statement } 2
\end{aligned}
$$

- suppose L has n elements
- statement1, statement2, etc. are repeated (looped) n times
- on i th loop, each has the value of i th element of L

MAT 305: Mathematical Computing

John Perry

Loops

Definite loops
Loop tricks I'd
rather you avoid for now Indefinite loops

Trivial example

1
2
3
4

MAT 305: Mathematical Computing

Less trivial example

MAT 305: Mathematical Computing

John Perry

Loops
Definite loops
Loop tricks I'd
rather you avoid for now
Indefinite loops

What happened?

$\mathrm{L}==[\mathrm{x} * * 2, \cos (\mathrm{x}), \mathrm{e} * * \mathrm{x} * \cos (\mathrm{x})]$

MAT 305: Mathematical Computing

John Perry

Loops

Definite loops
Loop tricks I'd
rather you avoid for now

Indefinite loops
Summary

What happened?

$L==[x * * 2, \cos (x), e * * x * \cos (x)]$
loop 1: each $=\mathrm{x} * * 2$
print diff(each) $m 2 x$

MAT 305: Mathematical Computing

John Perry

Loops

Definite loops
Loop tricks I'd
rather you avoid for now

Indefinite loops

What happened?

$$
\begin{aligned}
& \mathrm{L}==[\mathrm{x} * * 2, \cos (\mathrm{x}), \mathrm{e} * * \mathrm{x} * \cos (\mathrm{x})] \\
& \text { loop 1: each }=\mathrm{x} * * 2 \\
& \quad \text { print } \operatorname{diff}(\mathrm{each}) \rightsquigarrow 2 \mathrm{x} \\
& \text { loop 2: each }=\cos (x) \\
& \quad \text { print } \operatorname{diff}(\text { each }) \leadsto-\sin (x)
\end{aligned}
$$

MAT 305: Mathematical Computing

John Perry
Loops
Definite loops
Loop tricks I'd
rather you avoid for now

Indefinite loops
Summary

What happened?

$$
\begin{aligned}
& \mathrm{L}==[\mathrm{x} * * 2, \cos (\mathrm{x}), \mathrm{e} * * \mathrm{x} * \cos (\mathrm{x})] \\
& \text { loop 1: each }=\mathrm{x} * * 2 \\
& \text { print diff(each) } m 2 x \\
& \text { loop 2: each }=\cos (x) \\
& \text { print diff(each) } \leadsto \rightarrow-\sin (x) \\
& \text { loop 3: each }=e * * x * \cos (x) \\
& \text { print } \operatorname{diff}(e a c h) \Longrightarrow-e^{\wedge} x * \sin (x)+e^{\wedge} x * \cos (x)
\end{aligned}
$$

MAT 305: Mathematical Computing

Changing each ?

MAT 305: Mathematical Computing

Changing each ?

```
sage: L = [1, 2, 3,4]
sage: for each in L:
    each = each + 1
    print each
2
3
4
5
```

Notice: loop ran 4 times (L has 4 elements) even though each had value 5

MAT 305: Mathematical Computing

John Perry

Loops
Definite loops
Loop tricks I'd
Don't modify L unless you know what you're doing.

MAT 305: Mathematical Computing

Changing L ?

MAT 305: Mathematical Computing

Changing L ?

MAT 305: Mathematical Computing

John Perry

Loops

Definite loops
Loop tricks I'd
rather you avoid for now

More detailed example

Given $f(x), a, b \in \mathbb{R}$, and $n \in \mathbb{N}$, estimate $\int_{a}^{b} f(x) d x$ using n left Riemann sums.

Mathematical Computing

More detailed example

Loops

Given $f(x), a, b \in \mathbb{R}$, and $n \in \mathbb{N}$, estimate $\int_{a}^{b} f(x) d x$ using n left Riemann sums.

- Excellent candidate for definite loop if n known from outset.
- Riemann sum: repeated addition: loop!
- If n is not known, can still work, but a function with a loop is better. (Details later.)
- Start with pseudocode...

MAT 305: Mathematical Computing

John Perry

Pseudocode for definite loop

$$
\begin{aligned}
& \text { for counter } \in L \\
& \quad \text { loop statement } 1 \\
& \text { loop statement } 2 \\
& \text {... } \\
& \text { out-of-loop statement } 1
\end{aligned}
$$

Mathematical Computing

Pseudocode for definite loop

for counter $\in L$ loop statement 1 loop statement 2
...
out-of-loop statement 1
Notice:

- indentation ends at end of loop
- \in, not in (mathematics, not Python)
- no colon

MAT 305: Mathematical Computing

Ask yourself:

- What list do I use to repeat the action(s)?
- What do I have to do in each loop?
- How do I break the task into pieces?
- Divide et impera! Divide and conquer!

MAT 305: Mathematical Computing

John Perry
How do we estimate limits using left Riemann sums?

MAT 305: Mathematical Computing

Review

How do we estimate limits using left Riemann sums?

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

where

- $\Delta x=\frac{b-a}{n}$
- $x_{1}=a, x_{2}=a+\Delta x, x_{3}=a+2 \Delta x, \ldots x_{n}=a+(n-1) \Delta x$
- short: $x_{i}=a+(i-1) \Delta x$

Review

John Perry
How do we estimate limits using left Riemann sums?

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

where

- $\Delta x=\frac{b-a}{n}$
- $x_{1}=a, x_{2}=a+\Delta x, x_{3}=a+2 \Delta x, \ldots x_{n}=a+(n-1) \Delta x$
- short: $x_{i}=a+(i-1) \Delta x$

So...

- $L=[1,2, \ldots, n]$
- repeat addition of $f\left(x_{i}\right) \Delta x$
- use computer to remember previous value and add to it
- $\operatorname{sum}=\operatorname{sum}+\ldots$

MAT 305: Mathematical Computing

John Perry
Let $\Delta x=\frac{b-a}{n}$
Let $L=[1,2, \ldots, n]$
Let $S=0$
for $i \in L$
$x_{i}=a+(i-1) \Delta x$
$S=S+f\left(x_{i}\right) \Delta x$

Loops
Definite loops
Loop tricks I'd

Pseudocode

this is not given set up L-notice no Pythonese
S must start at 0 (no sum)
determine x_{i} add to S Mathematical Computing

Pseudocode

Let $\Delta x=\frac{b-a}{n}$
Let $L=[1,2, \ldots, n]$
Let $S=0$
for $i \in L$

$$
\begin{aligned}
& x_{i}=a+(i-1) \Delta x \\
& S=S+f\left(x_{i}\right) \Delta x
\end{aligned}
$$

translates to Sage as...

$$
\begin{aligned}
& \text { Delta_x }=(b-a) / x \\
& L=r a n g e(1, n+1) \\
& S=0 \\
& \text { for } i \text { in } L: \\
& \quad x i=a+(i-1) * \text { Delta_x } \\
& S=S+f(x=x i) * \text { Delta_x }
\end{aligned}
$$

Try it!

John Perry
sage: $f=x * * 2 ; a=0 ; b=1 ; n=3$
sage: Delta_x $=(b-a) / n$
sage: $\mathrm{L}=$ range $(1, \mathrm{n}+1)$
sage: $S=0$
sage: for i in L:

$$
\begin{aligned}
& x i=a+(i-1) * D e l t a _x \\
& S=S+f(x=x i) * D e l t a _x
\end{aligned}
$$

sage: S

Try it!

John Perry
sage: $f=x * * 2 ; a=0 ; b=1 ; n=3$
sage: Delta_x $=(b-a) / n$
sage: $\mathrm{L}=$ range $(1, \mathrm{n}+1)$
sage: $\mathrm{S}=0$
sage: for i in L:

$$
\begin{aligned}
& x i=a+(i-1) * D e l t a _x \\
& S=S+f(x=x i) * D e l t a _x
\end{aligned}
$$

sage: S
5/27

MAT 305: Mathematical Computing

John Perry

$$
\mathrm{L}=[1,2,3]
$$

Loops
Definite loops
Loop tricks I'd
rather you
avoid for now
Indefinite loops
Summary

What happened?

MAT 305: Mathematical Computing

John Perry

$$
\begin{aligned}
& \mathrm{L}=[1,2,3] \\
& \text { loop } 1: i=1
\end{aligned}
$$

$$
x i=a+(i-1) * D e l t a _x
$$

$$
\leadsto x i=0+0 *(1 / 3)=0
$$

$$
S=S+f(x=x i) * \text { Delta_x }
$$

$$
\leadsto \quad S=0+f(0) *(1 / 3)=0
$$ Mathematical Computing

John Perry
$\mathrm{L}=[1,2,3]$
loop 1: $i=1$

$$
\begin{aligned}
& \text { xi = a + (i - 1) *Delta_x } \\
& \leadsto x i=0+0 *(1 / 3)=0 \\
& S=S+f(x=x i) * \text { Delta_x } \\
& \leadsto S=0+f(0) *(1 / 3)=0
\end{aligned}
$$

loop 2: $i=2$

$$
\begin{aligned}
& x i=a+(i-1) * D e l t a _x \\
& m \quad \mathrm{xi}=0+1 *(1 / 3)=1 / 3 \\
& S=S+f(x=x i) * D e l t a _x \\
& m \quad S=0+f(1 / 3) *(1 / 3)=1 / 27
\end{aligned}
$$

Mathematical Computing

John Perry
$\mathrm{L}=[1,2,3]$
loop 1: $i=1$

$$
\begin{aligned}
& \text { xi = a + (i - 1) *Delta_x } \\
& \leadsto x \text { xi }=0+0 *(1 / 3)=0 \\
& \text { S = S + f(x=xi) *Delta_x } \\
& \leadsto S=0+f(0) *(1 / 3)=0
\end{aligned}
$$

loop 2: $i=2$

$$
\begin{aligned}
& \text { xi = a + (i - 1) *Delta_x } \\
& \leadsto x \text { xi }=0+1 *(1 / 3)=1 / 3 \\
& S=S+f(x=x i) * \text { Delta_x } \\
& m \quad S=0+f(1 / 3) *(1 / 3)=1 / 27
\end{aligned}
$$

loop 3: $i=3$

$$
\begin{aligned}
& \mathrm{xi}=\mathrm{a}+(\mathrm{i}-1) * \text { Delta_x } \\
& \underset{m}{\mathrm{~m}} \mathrm{xi}=0+2 *(1 / 3)=2 / 3 \\
& \mathrm{~S}=\mathrm{S}+\mathrm{f}(\mathrm{x}=\mathrm{xi}) * \text { Delta_x } \\
& \mathrm{m} \mathrm{~S}=1 / 27+f(2 / 3) *(1 / 3)=5 / 27
\end{aligned}
$$

MAT 305: Mathematical Computing

Try it with larger n !

MAT 305: Mathematical Computing

John Perry

Try it with larger $n!$

$$
\begin{array}{ll}
\text { sage: } & f=x * * 2 ; a=0 ; b=1 ; n=1000 \\
\text { sage: } & \text { Delta_x }=(b-a) / n \\
\text { sage: } & L=\text { range }(1, n+1) \\
\text { sage: } & S=0 \\
\text { sage: } & \text { for in } \mathrm{L}: \\
& x i=a+(i-1) * \text { Delta_x } \\
& S=S+f(x=x i) * \text { Delta_x }
\end{array}
$$

sage: S
665667/2000000
correct answer is $\frac{1}{3}$; use round () to see how "close"

MAT 305: Mathematical Computing

John Perry

Loops
Definite loops
Loop tricks I'd
rather you avoid for now

Typing and retyping is a pain

Make a function out of it! algorithm left_Riemann_sum

Mathematical Computing

John Perry

Loops
Definite loops

Typing and retyping is a pain

Make a function out of it! algorithm left_Riemann_sum inputs
f, a function on $[a, b] \subset \mathbb{R}$
n, number of left Riemann sums to take Mathematical Computing

John Perry
Loops
Definite loops

Typing and retyping is a pain

Make a function out of it! algorithm left_Riemann_sum inputs
f, a function on $[a, b] \subset \mathbb{R}$
n, number of left Riemann sums to take outputs
left Riemann sum approximation of $\int_{a}^{b} f(x) d x$

Mathematical Computing

John Perry

Typing and retyping is a pain

Make a function out of it!
algorithm left_Riemann_sum inputs
f, a function on $[a, b] \subset \mathbb{R}$
n, number of left Riemann sums to take

outputs

left Riemann sum approximation of $\int_{a}^{b} f(x) d x$ do

$$
\begin{aligned}
& \text { Let } \Delta x=\frac{b-a}{n} \\
& \text { Let } L=[1,2, \ldots, n] \\
& \text { Let } S=0 \\
& \text { for } i \in L \\
& \quad x_{i}=a+(i-1) \Delta x \\
& \quad S=S+f\left(x_{i}\right) \Delta x \\
& \text { return } S
\end{aligned}
$$

MAT 305: Mathematical Computing

John Perry

Translate into Sage code...

... on your own. Raise your hand if you need help.

You should be able to compute:

- left_Riemann_sum(x**2, 0, 1, 3)
- left_Riemann_sum(x**2, 0, 1, 1000)
\ldots and obtain the same answers as before.

MAT 305: Mathematical Computing

John Perry
Loops
Definite loops
Loop tricks I'd
rather you avoid for now

Indefinite loops
Summary

Outline
(1) Loops
(2) Definite loops
(3) Loop tricks I'd rather you avoid for now
(4) Indefinite loops
(5) Summary

MAT 305: Mathematical Computing

John Perry

- for each in L
- L an "iterable collection"
- may not want to construct list of n elements; merely repeat n times
- for each in xrange (L) has same effect
- slightly faster, uses less computer memory

MAT 305: Mathematical Computing

John Perry

Loops

Definite loops
Loop tricks I'd rather you avoid for now

Building lists from lists

Python (Sage) has a handy list constructor

- Suppose $L_{\text {old }}$ has n elements
- Let $L_{\text {new }}=\left[f(x)\right.$ for $\left.x \in L_{\text {old }}\right]$
- $L_{\text {new }}$ will be a list with n elements
- $L_{\text {new }}[i]==f\left(L_{\text {old }}{ }^{[i]}\right)$

Example

John Perry

Loops

Definite loops
Loop tricks I'd
rather you avoid for now

Indefinite loops
sage: $L=[x * * 2$ for x in range (10)]
sage: L
$[0,1,4,9,16,25,36,49,64,81]$

MAT 305： Mathematical
Computing
John Perry

```
Loops
```

Definite loops
Loop tricks I'd
rather you
avoid for now
Indefinite loops
Summary
（1）Loops

（2）Definite loops

（3）Loop tricks I＇d rather you avoid for now

（4）Indefinite loops

（5）Summary

Outline

 Mathematical Computing
The while command

```
while(condition) :
    statement1
    statement2
    ...
where
```

- statements are executed while condition remains true
- like definite loops, variables in condition can be modified
- warning: statements will not be executed if condition is false from the get-go

MAT 305: Mathematical Computing

John Perry

```
Loops
```

Definite loops

Loop tricks I'd
rather you avoid for now

Indefinite loops

Pseudocode for indefinite loop

while condition
statement1
statement 2
...
out-of-loop statement 1

Mathematical Computing

John Perry

Pseudocode for indefinite loop

while condition
statement1
statement 2
...
out-of-loop statement 1
Notice:

- indentation ends at end of loop
- condition is not in parentheses (plain English, not Python)
- no colon

Silly example

John Perry

$$
\begin{aligned}
& \text { sage: } f=x * * 10 \\
& \text { sage: while }(f \quad!=0): \\
& \quad f=\operatorname{diff}(f) \\
& \quad \text { print } f \\
& 10 * x \wedge 9 \\
& 90 * x \wedge 8 \\
& 720 * x^{\wedge} 7 \\
& 5040 * x \wedge 6 \\
& 30240 * x \wedge 5 \\
& 151200 * x^{\wedge} 4 \\
& 604800 * x^{\wedge} 3 \\
& 1814400 * x \wedge 2 \\
& 3628800 * x \\
& 3628800 \\
& 0
\end{aligned}
$$

MAT 305: Mathematical Computing

John Perry

Loops
Definite loops
Loop tricks I'd
rather you avoid for now

Indefinite loops Summary

More interesting example

MAT 305: Mathematical Computing

John Perry

Loops
Definite loops
Loop tricks I'd
rather you avoid for now

Indefinite loops Summary

More interesting example

Mathematical Computing

Method of Bisection?

The Method of Bisection is based on:
Theorem (Intermediate Value Theorem) If

- f is a continuous function on $[a, b]$, and
- $f(a) \neq f(b)$,
then
- for any C between $f(a)$ and $f(b)$,
- $\exists c \in(a, b)$ such that $f(c)=C$.

Method of Bisection?

The Method of Bisection is based on:

Theorem (Intermediate Value Theorem)

If

- f is a continuous function on $[a, b]$, and
- $f(a) \neq f(b)$,
then
- for any C between $f(a)$ and $f(b)$,
- $\exists c \in(a, b)$ such that $f(c)=C$.

Upshot: To find a root- $f(c)=0$-of a continuous function f, start with two x values a and b such that $f(a)$ and $f(b)$ have different signs, then bisect the interval.

Mathematical Computing

John Perry

Back to the example...

Given

- $f(x)=\cos x-x$
- continuous because it is a difference of continuous functions
- $a=0$ and $b=1$
- $f(a)=1>0$
- $f(b) \approx-0.4597<0$

Intermediate Value Theorem applies: can start Method of Bisection.

MAT 305: Mathematical Computing

John Perry

Loops

Definite loops
Loop tricks I'd rather you avoid for now

Indefinite loops

How to solve it?

Idea: Interval endpoints a and b are not close enough as long as their digits differ through the hundredths place.

Mathematical Computing

John Perry

How to solve it?

Idea: Interval endpoints a and b are not close enough as long as their digits differ through the hundredths place.

Application: While their digits differ through the hundredths place, halve the interval.

How to solve it?

Idea: Interval endpoints a and b are not close enough as long as their digits differ through the hundredths place.

Application: While their digits differ through the hundredths place, halve the interval.
"Halve" the interval? Pick the half containing a root!

MAT 305: Mathematical Computing

John Perry

Loops
Definite loops
Loop tricks I'd
rather you
avoid for now
Indefinite loops
algorithm method_of_bisection

MAT 305:
Mathematical Computing

John Perry

Loops
Definite loops
Loop tricks I'd
rather you avoid for now Indefinite loops
algorithm method_of_bisection inputs
f, a continuous function
$a, b \in \mathbb{R}$ such that $a \neq b$ and $f(a)$ and $f(b)$ have different signs

MAT 305: Mathematical Computing
algorithm method_of_bisection inputs
f, a continuous function
$a, b \in \mathbb{R}$ such that $a \neq b$ and $f(a)$ and $f(b)$ have different signs outputs
$c \in \mathbb{R}$ such that $f(c) \approx 0$ and c accurate to hundredths place

Let $a=c$
elseif $f(a)$ and $f(c)$ have opposite signs

$$
\text { Let } b=c
$$

$$
\text { else }-f(a) f(c)=0
$$

return c
return a, rounded to hundredths place
algorithm method_of_bisection inputs
f, a continuous function
$a, b \in \mathbb{R}$ such that $a \neq b$ and $f(a)$ and $f(b)$ have different signs
$c \in \mathbb{R}$ such that $f(c) \approx 0$ and c accurate to hundredths place
$a, b \in \mathbb{R}$ such that $a \neq b$ and $f(a)$ and $f(b)$ have different sig
outputs
$c \in \mathbb{R}$ such that $f(c) \approx 0$ and c accurate to hundredths place
$a, b \in \mathbb{R}$ such that $a \neq b$ and $f(a)$ and $f(b)$ have different sig
$c \in \mathbb{R}$ such that $f(c) \approx 0$ and c accurate to hundredths place do
while the digits of a and b differ through the hundredths
Let $c=\frac{a+b}{2}$
if $f(a)$ and $f(c)$ have the same sign

Pseudocode

Interval now $\left(\frac{a+b}{2}, b\right)$
Interval now $\left(a, \frac{a+b}{2}\right)$

MAT 305: Mathematical Computing

Try it!

John Perry
sage: def method_of_bisection(f,x,a,b): while (round $(\mathrm{a}, 2)$! $=$ round $(\mathrm{b}, 2)$):

MAT 305: Mathematical Computing

Try it!

sage: def method_of_bisection(f,x,a,b): while (round $(\mathrm{a}, 2)$! $=$ round $(\mathrm{b}, 2))$:
$c=(a+b) / 2$

Indefinite loops Mathematical Computing

Try it!

John Perry

sage: def method_of_bisection(f,x,a,b): while (round $(a, 2)$! $=$ round $(b, 2))$:
$c=(a+b) / 2$
if $(f(x=a) * f(x=c)>0):$
$a=c$
elif $(f(x=a) * f(x=c)<0)$:
$b=c$
else:
return C
return round (a,2) Mathematical Computing

Try it!

John Perry
sage: def method_of_bisection(f,x,a,b): while (round $(a, 2) \quad!=$ round $(b, 2))$:
$c=(a+b) / 2$
if $(f(x=a) * f(x=c)>0):$
$a=c$
elif $(f(x=a) * f(x=c)<0)$:
$b=c$
else:
return C
return round (a,2)
sage: method_of_bisection $(\cos (x)-x, x, 0,1)$
0.74

MAT 305: Mathematical
Computing
John Perry

Loops
Definite loops
Loop tricks I'd
rather you
avoid for now
Indefinite loops
Summary
(1) Loops
(2) Definite loops
(3) Loop tricks I'd rather you avoid for now
(4) Indefinite loops
(5) Summary

Summary

John Perry

Loops

- Two types of loops
- definite: n repetitions known at outset
- for $i \in L$
- list L of n elements controls loop
- don't modify L
- indefinite: number of repetitions not known at outset
- while condition
- Boolean condition controls loop

