
MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

MAT 305: Mathematical Computing
Lecture 7: Decision-making in Sage

John Perry

University of Southern Mississippi

Fall 2009

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Outline

1 Decision-making

2 Boolean statements

3 Having said all that. . .

4 Summary

You should be in worksheet mode to repeat the examples.

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Outline

1 Decision-making

2 Boolean statements

3 Having said all that. . .

4 Summary

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Decision making?
A function may have to act in different ways, depending on the
arguments.

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Decision making?
A function may have to act in different ways, depending on the
arguments.

Example
Piecewise functions:

f (x) =

(

f1 (x) , x ∈
�

a0,a1
�

f2 (x) , x ∈
�

a1,a2
�

.

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Decision making?
A function may have to act in different ways, depending on the
arguments.

Example
Characterizing concavity:

If f ′′ (a)> 0, then f is concave up at x= a;
if f ′′ (a)< 0, then f is concave down at x= a;
if f ′′ (a) = 0, then a is an inflection point of f .

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

if statements

if (condition):
if-statement1
if-statement2
. . .

non-if statement1

where
• condition: expression that evaluates to True or False
• condition True? statement1, statement2, etc. performed

• control passes finally to non-if statement1

• condition False? statement1, statement2, . . . skipped
• control passes immediately to non-if statement1

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Example

sage: f = cos(x)

sage: ddf = diff(f,2)

sage: if (ddf(3*pi/4) > 0):

print 'concave up at', 3*pi/4

concave up at 3/4*pi

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

if-else statements

if (condition):
if-statement1
. . .

else:

else-statement1
. . .

non-if statement1

where
• condition True? statement1, . . . performed

• else-statement1, . . . skipped

• condition False? else-statement1, . . . performed
• statement1, . . . skipped

• control passes finally to non-if statement1

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

if-elif-else statements

if (condition1):
if-statement1
. . .

elif (condition2):
elif1-statement1
. . .

elif (condition3):
elif2-statement1
. . .

. . .
else:

else-statement1
. . .

non-if statement1

where
• statement block

selected by
condition

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Pseudocode for if-elif-else

if condition1
if-statement1
. . .

else if condition2
elseif1-statement1
. . .

else if condition3
elseif2-statement1
. . .

. . .
else condition2

else-statement1
. . .

Notice:
• indentation
• no parentheses,

colons
• else if, not elif

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Example: concavity

Write a Sage function that tests whether a function f is concave
up or down at a given point. Have it return the string ’concave
up’, ’concave down’, or ’neither’.

Different choices =⇒ need to make a decision! =⇒ if

Start with pseudocode.
• What inputs are needed?
• What output is expected?
• What has to be done?

• step by step
• Divide et impera! Divide and conquer!

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Example: concavity

Write a Sage function that tests whether a function f is concave
up or down at a given point. Have it return the string ’concave
up’, ’concave down’, or ’neither’.

Different choices =⇒ need to make a decision! =⇒ if

Start with pseudocode.
• What inputs are needed?
• What output is expected?
• What has to be done?

• step by step
• Divide et impera! Divide and conquer!

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Example: concavity

Write a Sage function that tests whether a function f is concave
up or down at a given point. Have it return the string ’concave
up’, ’concave down’, or ’neither’.

Different choices =⇒ need to make a decision! =⇒ if

Start with pseudocode.
• What inputs are needed?
• What output is expected?
• What has to be done?

• step by step
• Divide et impera! Divide and conquer!

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Pseudocode for Example

algorithm check_concavity
inputs

a ∈R
f (x), a twice-differentiable function at x= a

outputs
’concave up’ if f is concave up at x= a
’concave down’ if f is concave down at x= a
’neither’ otherwise

do
if f ′′ (a)> 0

return ’concave up’
else if f ′′ (a)< 0

return ‘concave down’
else

return ‘neither’

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Pseudocode for Example

algorithm check_concavity
inputs

a ∈R
f (x), a twice-differentiable function at x= a

outputs

’concave up’ if f is concave up at x= a
’concave down’ if f is concave down at x= a
’neither’ otherwise

do
if f ′′ (a)> 0

return ’concave up’
else if f ′′ (a)< 0

return ‘concave down’
else

return ‘neither’

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Pseudocode for Example

algorithm check_concavity
inputs

a ∈R
f (x), a twice-differentiable function at x= a

outputs
’concave up’ if f is concave up at x= a
’concave down’ if f is concave down at x= a
’neither’ otherwise

do

if f ′′ (a)> 0
return ’concave up’

else if f ′′ (a)< 0
return ‘concave down’

else
return ‘neither’

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Pseudocode for Example

algorithm check_concavity
inputs

a ∈R
f (x), a twice-differentiable function at x= a

outputs
’concave up’ if f is concave up at x= a
’concave down’ if f is concave down at x= a
’neither’ otherwise

do
if f ′′ (a)> 0

return ’concave up’
else if f ′′ (a)< 0

return ‘concave down’
else

return ‘neither’

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Try it!

sage: def check_concavity(a, f, x):

ddf = diff(f, x, 2)

if (ddf(x=a) > 0):

return 'concave up'

elif (ddf(x=a) < 0):

return 'concave down'

else:

return 'neither'

sage: check_concavity(3*pi/4, cos(x), x)

'concave up'

sage: check_concavity(pi/4, cos(x), x)

'concave down'

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Try it!

sage: def check_concavity(a, f, x):

ddf = diff(f, x, 2)

if (ddf(x=a) > 0):

return 'concave up'

elif (ddf(x=a) < 0):

return 'concave down'

else:

return 'neither'

sage: check_concavity(3*pi/4, cos(x), x)

'concave up'

sage: check_concavity(pi/4, cos(x), x)

'concave down'

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Example: piecewise function

Write a function whose input is any x ∈R and whose output is

f (x) =

1− x2, x< 0
0, x= 0
x2− 1, x> 0.

Three different choices =⇒ need to make a decision! =⇒ if

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Example: piecewise function

Write a function whose input is any x ∈R and whose output is

f (x) =

1− x2, x< 0
0, x= 0
x2− 1, x> 0.

Three different choices =⇒ need to make a decision! =⇒ if

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Pseudocode for example

algorithm piecewise_f
inputs

a ∈R
outputs

f (a), where f is defined as above
do

if a< 0
return 1− a2

else if a= 0
return 0

else
return a2− 1

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Pseudocode for example

algorithm piecewise_f
inputs

a ∈R
outputs

f (a), where f is defined as above
do

if a< 0
return 1− a2

else if a= 0
return 0

else
return a2− 1

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Pseudocode for example

algorithm piecewise_f
inputs

a ∈R
outputs

f (a), where f is defined as above
do

if a< 0
return 1− a2

else if a= 0
return 0

else
return a2− 1

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Pseudocode for example

algorithm piecewise_f
inputs

a ∈R
outputs

f (a), where f is defined as above
do

if a< 0
return 1− a2

else if a= 0
return 0

else
return a2− 1

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Pseudocode for example

algorithm piecewise_f
inputs

a ∈R
outputs

f (a), where f is defined as above
do

if a< 0
return 1− a2

else if a= 0
return 0

else
return a2− 1

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Pseudocode for example

algorithm piecewise_f
inputs

a ∈R
outputs

f (a), where f is defined as above
do

if a< 0
return 1− a2

else if a= 0
return 0

else
return a2− 1

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Python code

sage: def piecewise_f(a):

if (a < 0):

return 1 - a**2

elif (a == 0):

return 0

else:

return a**2 - 1

sage: piecewise_f(3)

8

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

It gets better

sage: plot(piecewise_f, xmin=-3, xmax=3)

-3 -2 -1 1 2 3

-8

-6

-4

-2

2

4

6

8

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

It gets worse, too

How do we handle a piecewise function defined over more
complicated intervals?

Example
Suppose

g (x) =

3x, x ∈ [0,2)
− x

3 +
20
3 , x ∈ [2,20)

0, x≥ 20.

How do we define this in Sage?

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Pseudocode deceptively easy

algorithm piecewise_g
inputs

a ∈ [0,∞)
outputs

g (a), where g is defined as above
do

if a ∈ [0,2)
return 3a

else if a ∈ [2,20)
return − a

3 +
20
3

else
return 0

. . . but how does does Sage decide a ∈
�

x1,x2
�

?!?

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Pseudocode deceptively easy

algorithm piecewise_g
inputs

a ∈ [0,∞)
outputs

g (a), where g is defined as above
do

if a ∈ [0,2)
return 3a

else if a ∈ [2,20)
return − a

3 +
20
3

else
return 0

. . . but how does does Sage decide a ∈
�

x1,x2
�

?!?

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Sage code: careful use of if-elif?

def piecewise_g(a):

if a≥ 0 How do we even check this?
if a≥ 2

if a≥ 20
return 0

else

return − a
3 +

20
3

else

return 3a

Works, but not pleasant to work out (or easy to read).

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Sage code: careful use of if-elif?

def piecewise_g(a):

if a≥ 0 How do we even check this?
if a≥ 2

if a≥ 20
return 0

else

return − a
3 +

20
3

else

return 3a

Works, but not pleasant to work out (or easy to read).

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Outline

1 Decision-making

2 Boolean statements

3 Having said all that. . .

4 Summary

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Boolean algebra

Boolean algebra operates on only two values: {True,False}.
. . . or {1,0} if you prefer

. . . or {Yes,No} if you prefer

Basic operations:
• not x

• True iff x is False

• x and y
• True iff both x and y are True

• x or y
• True iff

• x is True; or
• y is True; or
• both x and y are True

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Boolean algebra

Boolean algebra operates on only two values: {True,False}.
. . . or {1,0} if you prefer

. . . or {Yes,No} if you prefer
Basic operations:
• not x

• True iff x is False

• x and y
• True iff both x and y are True

• x or y
• True iff

• x is True; or
• y is True; or
• both x and y are True

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Example: and, or

sage: 5 > 4

True obvious enough
sage: 5 < 4

False

sage: (5 > 4) or (5 < 4)

True because at least one is True (5 > 4)
sage: (5 > 4) and (5 < 4)

False because neither is True

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Example: not

sage: 4 > 4

False obvious enough
sage: not (4 > 4)

True

sage: not ((5 > 4) or (4 < 5))

False we have (not True)

sage: not (4 == 5)

True we have (not False)

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Equality and inequalities

Recall: = and == are not the same
• x = y assigns value of y to x

• x == y compares values of x, y, reports True or False

For inequalities,
• x != y compares values of x, y

• True iff not (x == y)

• x > y, x < y have usual meanings

• x≥ y? use x >= y

• True iff not (x < y)

• x≤ y? use x <= y

• True iff not (x > y)

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Equality and inequalities

Recall: = and == are not the same
• x = y assigns value of y to x

• x == y compares values of x, y, reports True or False

For inequalities,
• x != y compares values of x, y

• True iff not (x == y)

• x > y, x < y have usual meanings

• x≥ y? use x >= y

• True iff not (x < y)

• x≤ y? use x <= y

• True iff not (x > y)

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Equality and inequalities

Recall: = and == are not the same
• x = y assigns value of y to x

• x == y compares values of x, y, reports True or False

For inequalities,
• x != y compares values of x, y

• True iff not (x == y)

• x > y, x < y have usual meanings

• x≥ y? use x >= y

• True iff not (x < y)

• x≤ y? use x <= y

• True iff not (x > y)

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Back to the example

Example
Suppose

g (x) =

3x, x ∈ [0,2)
− x

3 +
20
3 , x ∈ [2,20)

0, x≥ 20.

How do we define this in Sage? Using Boolean algebra, the
pseudocode (and Python code) becomes much simpler.

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Pseudocode, again

algorithm piecewise_g
inputs

a ∈ [0,∞)
outputs

g (a), where g is defined as above
do

if a ∈ [0,2)
return 3a

else if a ∈ [2,20)
return − a

3 +
20
3

else
return 0

. . . but how does does Sage decide a ∈
�

x1,x2
�

?!?
use a≥ x1 and a< x2!

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Pseudocode, again

algorithm piecewise_g
inputs

a ∈ [0,∞)
outputs

g (a), where g is defined as above
do

if a ∈ [0,2)
return 3a

else if a ∈ [2,20)
return − a

3 +
20
3

else
return 0

. . . but how does does Sage decide a ∈
�

x1,x2
�

?!?
use a≥ x1 and a< x2!

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Sage code

sage: def piecewise_g(a):

if ((a >= 0) and (a < 2)):

return 3*a

elif ((a >= 2) and (a < 20)):

return -a/3 + 20/3

else:

return 0

Much easier to look at.

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Sage code

sage: def piecewise_g(a):

if ((a >= 0) and (a < 2)):

return 3*a

elif ((a >= 2) and (a < 20)):

return -a/3 + 20/3

else:

return 0

Much easier to look at.

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Voilà!

sage: def piecewise_g(a): ...

sage: pgplot = plot(piecewise_g, 0, 25)

sage: show(pgplot, aspect_ratio=1)

5 10 15 20 25

1
2
3
4
5
6

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Outline

1 Decision-making

2 Boolean statements

3 Having said all that. . .

4 Summary

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Sage has a piecewise()
command. . .

piecewise([[(a1, b1), f1], [(a2, b2), f2], . . .]) where
• ai,bi ∈R
• fi describes the behavior of the function on the interval
(ai,bi)

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

. . . so it’s actually a little easier

sage: piecewise_g = piecewise([[(-3,1), x**2],

[(2,5), x]])

sage: plot(piecewise_g, xmin=-3, xmax=3)

-3 -2 -1 1 2 3 4 5

2

4

6

8

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Outline

1 Decision-making

2 Boolean statements

3 Having said all that. . .

4 Summary

MAT 305:
Mathematical
Computing

John Perry

Decision-
making

Boolean
statements

Having said all
that. . .

Summary

Summary

• Decision making accomplished via if-elif-else
• pseudocode: if, else if, else

• Mathematical examples abound!
• testing properties of functions
• piecewise functions

• Boolean algebra helps create conditions for if and elif

• and, or, not
• <=, !=, >=

	Decision-making
	Boolean statements
	Having said all that…
	Summary

