MAT 305: Mathematical Computing

John Perry

Exact solution to equations

Extracting soluti

Systems of linear equations

Approximat solutions to equations

Summar

MAT 305: Mathematical Computing

Lecture 3: Solving equations in Sage

John Perry

University of Southern Mississippi

Fall 2009

equations

Summar

Outline

- Exact solutions to equations
 Exact solutions
 Extracting solutions
 Systems of linear equations
- **2** Approximate solutions to equations
- **3** Summary

You should be in worksheet mode to repeat the examples.

Approximat solutions to equations

Summar

Outline

1 Exact solutions to equations
Exact solutions
Extracting solutions
Systems of linear equations

- 2 Approximate solutions to equations
- **3** Summary

Extracting solution Systems of linear equations

Approximat solutions to equations

Summar

Exact solutions

- Many equations can be solved without rounding
 - exact solutions
 - Solving by radicals: old, important problem
 - Niels Abel, Evariste Galois, Joseph Lagrange, Paolo Ruffini,
 ...
 - Special methods
- Others require approximate solutions

Extracting solutio Systems of linear equations

Approximate solutions to equations

Summar

The solve() command

solve (eqs, vars) where

- *eqs* is a list of equations
 - an equation contains the symbol ==, "equals"
 - the symbol = means "assign"
- vars is a list of variables to solve for
 - variables not listed are treated as constants
- returns a list of equations (solutions) *if* Sage can solve *eqs* exactly

Extracting solution Systems of linear equations

Approximat solutions to equations

Summar

FACT OF PYTHON

- = (single)
 - assignment of a value to a symbol
 - f = x**2 4 assigns the value $x^2 4$ to f
 - "let $f = x^2 4$ "
- == (double)
 - two quantities are equal
 - 16==4**2 is True
 - 16==5**2 is False
 - 16==x**2 is *conditional*; it depends on the value of x
- Confuse the two? *naughty user*

Systems of linear equations

Approximat solutions to equations

Summar

Example

sage: 16==4**2

True

sage: 16==5**2

False

sage: 16==x**2

16==x**2

(translation: I dunno)

John Perry

Exact solution to equations

Exact solutions

Extracting solution Systems of linear equations

Approximat solutions to

Summ

Univariate polynomials

Extracting solution Systems of linear equations

Approximat solutions to equations

Summai

Unknown constants

John Perry

Exact solutions to equations

Extracting solutions

Systems of linea

Approximate solutions to

Summa

Copying solutions not always a good idea

```
sage: solve([3*x**3-4*x==7],[x])

[x == -1/2*(1/54*sqrt(3713) + 7/6)^(1/3)*(I*sqrt(3) + 1) + 1/9*(2*I*sqrt(3) - 2)/(1/54*sqrt(3713) + 7/6)^(1/3), x == -1/2*(1/54*sqrt(3713) + 7/6)^(1/3)*(-I*sqrt(3) + 1) + 1/9*(-2*I*sqrt(3) - 2)/(1/54*sqrt(3713) + 7/6)^(1/3), x == (1/54*sqrt(3713) + 7/6)^(1/3) + 4/9/(1/54*sqrt(3713) + 7/6)^(1/3)]
```

ouch!

Extracting solutions

Systems of linear equations

Approxima solutions to equations

Summa

Assign, use []

To extract values from solutions, assign and use []

Example

```
sage: sols = solve([x**4-1==0],[x])
sage: sols
[x == I, x == -1, x == -I, x == 1]
sage: sols[0]
x == I
sage: sols[1]
x == -1
sage: sols[3]
x == 1
```

Approximat solutions to equations

Summai

[] ranges from 0 to (length-1)

FACT OF PYTHON

Suppose L is a list or tuple of length n

• first element: L[0]

• last element: L [*n*-1]

L[n]? naughty user

Example

```
sage: sols = solve([x**4-1==0],[x])
sage: sols
[x == I, x == -1, x == -I, x == 1]
sage: sols[4]
...output cut...
IndexError: list index out of range
```

Extracting solutions

But I want only the number...!

- Every equation has a right hand side
- Use .rhs() command
 - "dot" command: append to object

equations

Summa

Example

```
eq = 4*x**2 - 3*x + 1 == 0
sage:
       sols = solve([eq],[x])
sage:
       len(sols)
sage:
2
                            (len() gives length of a collection)
sage: x1 = sols[0]
sage:
      x1
                                    (oops! want only solution)
x == -1/8*I*sqrt(7) + 3/8
sage: x1 = sols[0].rhs()
sage:
      x1
-1/8*I*sqrt(7) + 3/8
                                                    (better)
```

Extracting solutions

Let's test solutions

Extract second solution; substitute into equation

```
sage: x2 = sols[1].rhs()
sage: x2
1/8*I*sqrt(7) + 3/8
sage: eq(x=x2)
4*(1/8*I*sqrt(7) + 3/8)^2
 -3/8*I*sqrt(7) - 1/8 == 0
                                  (need to expand product)
sage: expand(eq(x=x2))
0 == 0
```

John Perry

Exact solution to equations

Exact solutions

Systems of linear equations

Approximat solutions to equations

Summar

Systems of linear equations

- system of linear, multivariate equations
- can always be solved *exactly*
- zero, one, or infinitely many solutions
- solution is a *point*
 - Sage returns a list of equations

Extracting solution

Systems of linear equations

Approxima solutions to equations

Summa

No solution

Extracting solut

Systems of linear equations

Approximat solutions to equations

Summa

One solution

Extracting soluti

Systems of linear equations

Approximat solutions to equations

Summa

Infinitely many solutions

Exact solutions

Extracting solution

Systems of linear equations

Approximate solutions to equations

Summar

r1?!? What is r1?

r1 is a parameter that can take infinitely many values

$$[[x == 13*r1 - 5, y == 10*r1 - 4, z == r1]]$$

corresponds to

$$x = 13t - 5$$
, $y = 10t - 4$, $z = t$.

Example

$$t = 0$$
?

- x = -5, y = -4, z = 0
- Susbtitute into system:

$$3(-5)-4(-4)+0=1$$

$$2(-5)-3(-4)+4(0)=2$$

$$-6(-5)+8(-4)-2(0)=-2.$$

Systems of linear equations

Extract and test

```
eq1 = 3*x - 4*y + z == 1
sage:
       eq2 = 2*x - 3*y + 4*z == 2
sage:
       eq3 = -6*x + 8*y - 2*z == -2
sage:
       sols = solve([eq1, eq2, eq3], [x,y,z])
sage:
```

sols is a list of lists...

```
sage: sol1 = sols[0]
sage: x1 = sol1[0].rhs()
sage: y1 = sol1[1].rhs()
sage: z1 = sol1[2].rhs()
sage: x1,y1,z1
(13*r2 - 5, 10*r2 - 4, r2)
sage: eq1(x=x1, y=y1, z=z1)
1 == 1
```

Approximate solutions to equations

Summar

Outline

Exact solutions to equations
 Exact solutions
 Extracting solutions
 Systems of linear equations

- **2** Approximate solutions to equations
- **3** Summary

Summar

Why approximate?

• Exact solutions often... complicated

$$-\frac{1}{2} \cdot \sqrt[3]{\frac{\sqrt{3713}}{54} + \frac{7}{6}} \cdot \left(1 + i\sqrt{3}\right) + \frac{-2 + 2i\sqrt{3}}{9} \cdot \sqrt[3]{\frac{\sqrt{3713}}{54} + \frac{7}{6}}$$

- Approximate solutions easier to look at, manipulate
 - −0.8280018073 − 0.8505454986i
- Approximation often *much*, *much* faster!
 - except when approximation fails
 - bad condition numbers
 - rounding errors
 - inappropriate algorithm (real solver looking for complex roots)

Approximate solutions to equations

Summar

The find_root() command

find_root(equation, xmin, xmax) where

- equation has a root between real numbers xmin and xmax
- reports an error if no root exists
- this is a real solver: looks for real roots
- uses Scipy package

Extracting solutio

Approximate solutions to equations

Summar

```
Example
```

```
sage: find_root(x**5+2*x+1==0,-10,0)
```

-0.48638903593454297

sage: $find_root(x**5+2*x+1==0,0,10)$

... output cut...

RuntimeError: f appears to have no zero on the

interval

Extracting solution

Systems of linear equations

Approximate solutions to equations

Summar

The .roots() command

polynomial.roots() ordinarily finds exact roots of a polynomial, along with multiplicities

- reports error if cannot find explicit roots
- complex roots: option ring=CC
 - CC: ℂ (approximated)
- uses Scipy package

Exact solutions
Extracting solution

Systems of linear equations

Approximate

solutions to equations

Summar

```
Example
```

```
sage: p = x**5+2*x+1
sage: p.roots()
...output cut...
RuntimeError: no explicit roots found
sage: p.roots(ring=CC)
[(-0.486389035934543, 1),
    (-0.701873568855862 - 0.879697197929823*I, 1),
    (-0.701873568855861 + 0.879697197929823*I, 1),
    (0.945068086823134 - 0.854517514439046*I, 1),
    (0.945068086823133 + 0.854517514439046*I, 1)]
```

notice: each root has multiplicity 1

John Perry

to equations

Exact solutions

Extracting solution Systems of linear equations

Approximate solutions to equations

Summary

```
Extract and use complex roots
```

```
sols = p.roots(ring=CC)
sage:
          sols is a list of tuples (root, multiplicity):
              need to extract tuple first, then root
                                                want first root
sage: x0 = sols[0]
sage:
      x0
(-0.486389035934543, 1)
                      oops! I want only the root; I have the tuple!
      x0 = sols[0][0]
                                    root is first element of tuple
sage:
sage:
       x0
-0.486389035934543
      x1 = sols[1][0]
                                              want second root
sage:
sage:
       x1
-0.701873568855862 - 0.879697197929823*T
```

solutions to equations

Summary

Outline

- 1 Exact solutions to equations
 Exact solutions
 Extracting solutions
 Systems of linear equations
- 2 Approximate solutions to equations
- **3** Summary

Approximat solutions to equations

Summary

Summary

- distinguish = (assignment) and == (equality)
- Sage can find exact or approximate roots
- solve() command finds exact solutions
 - not all equations can be solved exactly
 - systems of linear equations always exact
 - extract using [] and .rhs()
- find_root() approximates real roots on an interval
 - error if no roots on interval
- .roots (ring=CC) approximates real and complex roots
 - append to polynomial or equation