John Perry

What this class is about

Computer programming

Introduction to Sage

Using computer memory

Summary

MAT 305: Mathematical Computing Lecture 1: Introduction to Mathematical Computing

John Perry

University of Southern Mississippi

October 6, 2009

John Perry

- What this class is about
- Computer programming
- Introduction to Sage
- Using computer memory
- Summary

1 What this class is about

- 2 Computer programming
- **3** Introduction to Sage
- **4** Using computer memory

5 Summary

Outline

John Perry

What this class is about

- Computer programming
- Introduction to Sage
- Using computer memory
- Summary

1 What this class is about

- **2** Computer programming
- **3** Introduction to Sage
- **4** Using computer memory
- **5** Summary

Outline

Description

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

What this class is about

MAT 305: Mathematical

Computing John Perry

- Computer programming
- Introduction to Sage
- Using computer memory
- Summary

- Online: Introduction to a computer algebra system using calculus-based projects. Students will solve mathematical problems in the MAPLE environment which require an understanding of calculus concepts.
- Syllabus: Introduction to a computer algebra system using calculus-based projects. Students will solve mathematical problems in the Sage environment which require an understanding of calculus concepts.

Problem solving

▲□▶▲□▶▲□▶▲□▶ □ のQ@

What this class is about

MAT 305: Mathematical

Computing John Perry

- Computer programming
- Introduction to Sage
- Using computer memory
- Summary

- This class about problem-solving, like mathematics
- Some problems best attacked with a computer
 - Repetitive/tedious
 - Long
- Computers require instructions, called programs
- We study *some* programming, but class not about programming

John Perry

What this class is about

- Computer programming
- Introduction to Sage
- Using computer memory
- Summary

- Software for Algebra and Geometry Exploration
- Computer Algebra System "started" by William Stein

Sage?

- Depends on other CASs
 - Maxima for Calculus
 - Singular for Commutative Algebra
 - GAP for group theory
 - etc.

Why Sage?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• "Free" software

- "Free as in beer": no cost to you
 - Downloading free
 - Installing free
 - Copying free
 - Bug fixes free
 - Future versions free
- "Free as in speech":
 - Open-source software
 - No hidden algorithms
 - Can study implementation
 - Can correct, improve, contribute to Sage

MAT 305: Mathematical Computing

John Perry

What this class is about

Computer programming

Introduction to Sage

Using computer memory

Summary

John Perry

What this class is about

- Computer programming
- Introduction to Sage
- Using computer memory
- Summary

Free mathematics

Theorem

Every odd integer m has the form m = 2q + 1, where n is an integer.

Proof.

Let *m* be an odd integer. By the Division Theorem, there exist integers *q*, *r* such that m = 2q + r and $0 \le r < 2$. This leaves two possible values of *r*, 0 or 1. If r = 0, then m = 2q is a multiple of 2. Thus *m* is even by definition of the word. This contradicts the choice of *m* as an odd integer! Hence r = 1, and m = 2q + 1 as desired.

Analogy

John Perry

What this class is about

Computer programming

Introduction to Sage

Using computer memory

Summary

Proprietary mathematics

Theorem Dr. Perry is the world's best math professor. Proof.

Trust me: I get paid to write theorems.

Analogy

John Perry

What this class is about

- Computer programming
- Introduction to Sage
- Using computer memory
- Summary

But I prefer Maple!

- Fine, buy your own copy
 - Student discount available
 - I will tell you the Maple equivalents for everything we do in Sage
 - You can submit homework as Maple worksheet
- Be warned:
 - Future versions not free
 - Bug fixes not free
 - I used to use Maple and switched to Sage
 - Recent versions disappointed me
 - After you graduate, pay full price
 - Not always backwards compatible (neither is Sage, but Sage is free)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

John Perry

What this class is about

Computer programming

Introduction to Sage

Using computer memory

Summary

1 What this class is about

2 Computer programming

3 Introduction to Sage

4 Using computer memory

5 Summary

Outline

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Why program?

What this class is about

MAT 305: Mathematical

Computing John Perry

Computer programming

Introduction to Sage

Using computer memory

Summary

• Programming bridges gap between humans, computers

- Computers don't understand human languages
 - Humans intuitive, poetic; computers literal, direct
 - Computers understand electric states: on or off
- (Most) humans don't understand a computer's native language
 - Mathematics literal and precise, but (most) humans don't understand it, either!
 - Even the humans that do, prefer not to talk to the computer in that language
- Firmer control over computer
- Deeper understanding of computer technology

John Perry

What this class is about

Computer programming

Introduction to Sage

Using computer memory

Summary

Kinds of computer languages

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• Compiled

- C/C++
- Fortran
- Interpreted or scripting
 - Python
 - BASIC
- Mixed ("bytecode")
 - Java

Python

▲□▶▲□▶▲□▶▲□▶ □ のQ@

MAT 305: Mathematical Computing

John Perry

What this class is about

Computer programming

Introduction to Sage

Using computer memory

Summary

- Sage built primarily in Python
- Not all *components* of Sage built in Python:
 - Maxima in LISP
 - Singular in C/C++
- Python also interface between Sage and user

John Perry

What this class is about

Computer programming

Introduction to Sage

Using computer memory

Summary

Advantages of Python

- Modern language
 - Facilities for object-oriented, functional programming
- Wide distribution and usage
- Flexible
- Many good packages enhance it
- Many employers use it

Python \neq Sage

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Computing John Perry

MAT 305: Mathematical

What this class is about

Computer programming

Introduction to Sage

Using computer memory

Summary

- Some Python commands don't work in Sage's worksheet mode
 - input()
- Sage commands do not work in plain Python

John Perry

What this class is about

Computer programming

Introduction to Sage

Using computer memory

Summary

1 What this class is about

2 Computer programming

3 Introduction to Sage

4 Using computer memory

5 Summary

Outline

◆□ → ◆□ → ◆三 → ◆三 → ○へ⊙

John Perry

What this class is about

Computer programming

Introduction to Sage

Using computer memory

Summary

How to get Sage

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

- Download, install to your computer
 - latest version at www.Sagemath.org
 - Windows users must also download VM-ware player at www.vmware.com/products/player
 - ask nicely, & I might give you a DVD with Sage for Windows, Mac, Linux; VM-ware; jEdit, and other necessary items
- Available in lab (SH 318)
 - Very old version, may be out of date
- Access online at https://sage.st.usm.edu:8000/
 - Create account
 - Can share worksheets with me
 - Too many people online simultaneously and it drags...

John Perry

First steps in Sage

▲□▶▲□▶▲□▶▲□▶ □ のQ@

What this class is about

Computer programming

Introduction to Sage

Using computer memory

Summary

• Start Sage

- If not using web interface, create account and login
 - Don't forget your password

Initial state

▲□▶▲□▶▲□▶▲□▶ □ のQ@

What this class is about

MAT 305: Mathematical

Computing John Perry

Computer programming

Introduction to Sage

Using computer memory

Summary

• Variable x is defined

- To define more variables, use the var () command
 - var('y') defines y
- Try to use an undefined variable?

sage: x+y+z

NameError: name 'z' is not defined

Arithmetic

▲□▶▲□▶▲□▶▲□▶ □ のQ@

John Perry

MAT 305: Mathematical

Computing

Computer

Introduction to Sage

Using computer memory

Summary

operation	sage equivalent
add x and y	x + y
subtract <i>y</i> from <i>x</i>	x - y
multiply x and y	x * y
divide x by y	x / y
raise x to the yth power	x ** y or x ^ 4

- Do not forget to multiply coefficients to variables: represent 2x by 2*x *not* 2x
- Prefer ** to ^ for various sordid reasons

Example

▲ロ▶▲園▶▲ヨ▶▲ヨ▶ ヨ のQ@

MAT 305: Mathematical Computing

John Perry

What this class is about

Computer programming

Introduction to Sage

Using computer memory

Summary

• Sage simplifies (of course)

```
sage: 5 + 3
8
sage: (x + 3*x**2) - (2*x - x**2)
4x^2 - x
```

John Perry

What this class is about

Computer programming

Introduction to Sage

Using computer memory

Summary

Transcendental numbers and functions

number	sage equivalent
е	e
π	pi

operation	sage equivalent
e^{x}	e**x
$\ln x$	ln(x)
$\sin x$, $\cos x$, etc.	<pre>sin(x), cos(x), etc.</pre>

• Don't forget to use parentheses when necessary e**(2*x) and e**2*x are not the same

John Perry

What this class is about

Computer programming

Introduction to Sage

Using computer memory

Summary

Some useful operations

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

operation	sage equivalent
factor <i>expr</i>	factor(<i>expr</i>)
simplify expr	<pre>simplify(expr)</pre>
expand <i>expr</i>	expand(<i>expr</i>)
round <i>expr</i> to <i>n</i> decimal places	round(expr, n)

Examples

Mathematical Computing John Perry

MAT 305-

What this class is about

Computer programming

Introduction to Sage

Using computer memory

Summary

• Some algebraic expressions simplify automatically; others need a hint

sage: (x**2 - 1) / (x - 1)(x^2 - 1)/(x - 1) sage: (factor(x**2 - 1)) / (x - 1) x + 1

• Expand the product $(x - 1)(x^3 + x^2 + x + 1)$

sage: expand((x-1)*(x**3+x**2+x+1))
x^4 - 1

• Round *e* to 5 decimal places

sage: round(e,5)
2.71828

Getting help

What this class is about

MAT 305: Mathematical

Computing John Perry

Computer programming

Introduction to Sage

Using computer memory

Summary

- Online Sage documentation (tutorial, manual, etc.) at http://www.sagemath.org/doc/
- Command-line help: type command, followed by question mark, and press Enter

sage: round?
[output omitted]

• Email: john.perry@usm.edu

John Perry

- What this class is about
- Computer programming
- Introduction to Sage
- Using computer memory
- Summary

1 What this class is about

- **2** Computer programming
- **3** Introduction to Sage
- **4** Using computer memory
- **5** Summary

Outline

ヘロト 人間 ト 人 ヨト 人 ヨトー

3

Expressions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

What this class is about

MAT 305: Mathematical

Computing John Perry

Computer programming

Introduction to Sage

Using computer memory

Summary

• Use a computer's memory by defining *expressions* with the *assignment symbol* =

```
sage: f = x * * 2 - 1
```

Sage does not answer when you define an expression

• Expressions are remembered until you terminate Sage

sage: f x^2 - 1

Valid names

▲□▶▲□▶▲□▶▲□▶ □ のQ@

MAT 305: Mathematical Computing

John Perry

What this class is about

Computer programming

Introduction to Sage

Using computer memory

Summary

Names for expressions ("identifiers") can

- contain letters (A-Z), digits (0-9), or the underscore () but
- must begin with a letter or the underscore and
- may not contain other character (space, tab, !@#\$%^{*}, etc.)

John Perry

What this class is about

Computer programming

Introduction t Sage

Using computer memory

Summary

Using expressions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• Manipulate expression in the same way as the mathematical object it represents

```
sage: factor(f)
(x - 1)*(x + 1)
sage: f - 3
x<sup>2</sup> - 4
```

• Avoid repeating computations: substitute!

```
sage: f(x=3)
8
sage: f(x=-1)
0
sage: f(x=4)
15
```

John Perry

What this clas is about

Computer programming

Introduction to Sage

Using computer memory

Summary

Alternate method of substitution

Sometimes you should use the **dictionary** method of substitution. An example would be when an identifier stands for a variable.

▲ロ▶▲園▶▲ヨ▶▲ヨ▶ ヨ のQ@

sage: f = x**2 + y**2
sage: f(x=3)
9 + y^2

John Perry

What this class is about

Computer programming

Introduction to Sage

Using computer memory

Summary

Alternate method of substitution

Sometimes you should use the **dictionary** method of substitution. An example would be when an identifier stands for a variable.

sage:	f =	x**2	+	y**2
sage:	f(x	=3)		
9 + y^2	2			
sage:	z =	x		
sage:	f(z	=3)		
x^2 + 3	y^2			

Here we let z stand in place of xWe want to replace x by 3, but...

John Perry

What this class is about

Computer programming

Introduction to Sage

Using computer memory

Summary

Alternate method of substitution

Sometimes you should use the **dictionary** method of substitution. An example would be when an identifier stands for a variable.

sage:	f = x * * 2	+	y**2
sage:	f(x=3)		
9 + y^2	2		
sage:	z = x		
sage:	f(z=3)		
x^2 + y	7 [^] 2		
sage:	f({x:3})		
9 + y^2	2		

Here we let z stand in place of xWe want to replace x by 3, but...

This also means replace x by 3 in f

John Perry

What this class is about

Computer programming

Introduction to Sage

Using computer memory

Summary

Alternate method of substitution

Sometimes you should use the **dictionary** method of substitution. An example would be when an identifier stands for a variable.

sage:	f = x * * 2 + y * * 2
sage:	f(x=3)
9 + y^2	
sage:	z = x
sage:	f(z=3)
x^2 + y	^2
sage:	f({x:3})
9 + y^2	
sage:	f({z:3})
$9 + y^2$	

Here we let z stand in place of xWe want to replace x by 3, but...

This also means replace x by 3 in f

This works where f(z=3) did not

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

John Perry

- What this class is about
- Computer programming
- Introduction to Sage
- Using computer memory
- Summary

1 What this class is about

- **2** Computer programming
- **3** Introduction to Sage
- **4** Using computer memory
- **5** Summary

Outline

ヘロト 人間 ト 人 ヨト 人 ヨトー

3

Summary

▲□▶▲□▶▲□▶▲□▶ □ のQ@

What this class is about

John Perry

MAT 305: Mathematical Computing

- Computer programming
- Introduction to Sage
- Using computer memory
- Summary

- Sage can help solve math problems
- Basic, intuitive facilities for arithmetic
- Create variables to your heart's content
- Define expressions to avoid repeating computations