INDIVIDUAL ASSIGNMENT 1

MAT 305 FALL 2009

Due date:

If you view the class syllabus online, you notice an animation at the top of the page. This animation shows a relationship that you learned in Calculus:

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \left(\frac{\Delta y}{\Delta x} \right);$$

that is, the instantaneous rate of change of y, also called its **derivative**, is the limit of the average rates of change of y between x_1 and x_2 as $\Delta x = x_2 - x_1$ approaches zero.

Rely on what you know from Calculus to answer 1–3.

- (1) Describe how the animation represents the instantaneous rate of change of y.
- (2) Describe how the animation represents the average rates of change of y.
- (3) Describe how the animation represents the relationship between the average rates of change and the instantaneous rate of change.
- (4) Use the last digit of your student number to select the following function and point.

if your student number ends with		and $a = \dots$
0,1	$e^{-x}\cos x$	$-\frac{1}{4}$
2,3	$e^{-x}\sin x$	$\frac{\pi}{4}$
-,0		4
4,5	$\ln\left(1+x^2\right)$	0
6,7	1	0
	$\overline{1+x^2}$	
8,9	$\frac{2x}{1+x^2}$	1
	$1 \pm \chi$	

. .

- (5) Plot f in black over a small neighborhood of x = a.
- (6) Show that the derivative of f at x = a is 0.*Note:* Use Sage to do this; don't do it by hand.
- (7) Plot both f and the line tangent to f at x = a. Make the tangent line blue.
- (8) Choose four x values b_1 , b_2 , b_3 , and b_4 close to x = a. Compute the slopes of the secant lines between a and b_i for i = 1, 2, 3, 4.
- (9) Create four plots, each of which combines f with a blue secant line.
- (10) Combine all the plots to obtain an animation similar to the one on my webpage. *Hint:* Notice that on the webpage the secant lines move forwards and backwards; your animation should replicate this behavior.