TEST 3

MAT 168

Directions: Solve as many problems as well as you can in the blue examination book, writing in pencil and showing all work. Put away any cell phones; the mere appearance will give a zero.

1. (60% of test) Compute six of the antiderivatives indicated. (Each is worth 10%.) Some require integration by u-substitution; others, integration by parts; still others, trigonometric techniques, including trigonometric substitution; and many require multiple techniques, or the same technique applied multiple times.
(a) $\int \frac{\ln ^{3} x}{x} d x$

We'll try u-substitution with $u=\ln x$, because its derivative, $d u / d x=1 / x$, also appears in the integral. We have $d x=x d u$. Hence

$$
\int \frac{\ln ^{3} x}{x} d x=\int \frac{u^{3}}{x} x d u=\int u^{3} d u=\frac{u^{4}}{4}+C=\frac{\ln ^{4} x}{4}+C .
$$

(b) $\int_{1}^{e} x^{3} \ln x d x$

We'll try integration by parts, because it looks like a product. The integral of $\ln x$ is hard, so we'll try

$$
\begin{aligned}
u & =\ln x & v^{\prime} & =x^{3} \\
u^{\prime} & =\frac{1}{x} & v & =\frac{x^{4}}{4}
\end{aligned}
$$

and we have

$$
\begin{aligned}
I=\int_{1}^{e} x^{3} \ln x d x & =\int_{1}^{e} u v^{\prime} d x=\left[u v-\int u^{\prime} v d x\right]_{1}^{e} \\
& =\left[\frac{x^{4} \ln x}{4}-\int \frac{1}{x} \cdot \frac{x^{4}}{4} d x\right]_{1}^{e} \\
& =\left[\frac{x^{4} \ln x}{4}-\frac{1}{4} \int x^{3} d x\right]_{1}^{e^{e}} \\
& =\left[\frac{x^{4} \ln x}{4}-\frac{1}{4} \cdot \frac{x^{4}}{4}\right]_{1}^{e} \\
& =\left(\frac{e^{4} \ln e^{1}}{4}-\frac{e^{4}}{16}\right)-\left(\frac{1^{4} \ln 1^{* 0}}{4}-\frac{1}{16}\right) \\
& =\frac{3 e^{4}-1}{16} .
\end{aligned}
$$

(c) $\int_{\text {The power is even, so we have to apply a half-angle formula: }} \sin ^{4} \beta d \beta$

$$
\begin{aligned}
\int \sin ^{4} \beta d \beta & =\int\left(\sin ^{2} \beta\right)\left(\sin ^{2} \beta\right) d \beta \\
& =\int\left(\frac{1-\cos 2 \beta}{2}\right)\left(\frac{1-\cos 2 \beta}{2}\right) d \beta \\
& =\frac{1}{4} \int 1-2 \cos 2 \beta+\cos ^{2} 2 \beta d \beta
\end{aligned}
$$

The first two terms are relatively easy to integrate. The third term, however, has (again) an even power of cosine, so we need to use the half-angle formula again:

$$
\begin{aligned}
\int \sin ^{4} \beta d \beta & =\frac{1}{4} \int 1-2 \cos 2 \beta+\frac{1+\cos 4 \beta}{2} d \beta \\
& =\frac{1}{4}\left[\beta-2 \cdot \frac{1}{2} \sin 2 \beta+\frac{1}{2}\left(\beta+\frac{1}{4} \sin 4 \beta\right)\right]+C \\
& =\frac{3}{8} \beta-\frac{1}{4} \sin 2 \beta+\frac{1}{32} \sin 4 \beta+C .
\end{aligned}
$$

(d) $\int \frac{x^{2}}{\sqrt{9-x^{2}}} d x$

It would be unwise to try u-substitution with $u=9-x^{2}$, because its derivative, $-2 x$, does not appear in the integral. On the other hand, we do see the form $a^{2}-x^{2}$, which suggests that we should try the substitution $x=3 \sin \theta$. We have $d x / d \theta=3 \cos \theta$, and hence

$$
\begin{aligned}
\int \frac{x^{2}}{\sqrt{9-x^{2}}} d x & =\int \frac{9 \sin ^{2} \theta}{\sqrt{9-9 \sin ^{2} \theta}} \cdot 3 \cos \theta d \theta \\
& =9 \int \frac{\sin ^{2} \theta}{\sqrt{9} \sqrt{1-\sin ^{2} \theta}} \cdot \not 2 \cos \theta d \theta \\
& =9 \int \frac{\sin ^{2} \theta}{\sqrt{\cos ^{2} \theta}} \cdot \cos \theta d \theta \\
& =9 \int \frac{1-\cos 2 \theta}{2} d \theta \\
& =\frac{9}{2}\left(\theta-\frac{1}{2} \sin 2 \theta\right)+C
\end{aligned}
$$

It is not enough to leave our answer in terms of θ; we must rewrite in terms of x. We use two facts. First,

$$
x=3 \sin \theta \quad \Longrightarrow \quad \theta=\arcsin \frac{x}{3} .
$$

Second,

$$
\sin 2 \theta=2 \sin \theta \cos \theta
$$

Hence
$\int \frac{x^{2}}{\sqrt{9-x^{2}}} d x=\frac{9}{2}\left(\theta-\frac{1}{2} \sin 2 \theta\right)+C=\frac{9}{2}\left(\theta-\frac{1}{2} \cdot 2 \sin \theta \cos \theta\right)=\frac{9}{2}\left(\arcsin \frac{x}{3}-\frac{x}{3} \cdot \frac{\sqrt{9-x^{2}}}{3}\right)$,
where we determine that $\cos \theta=\sqrt{9-x^{2}} / 3$ using a right triangle whose length and hypotenuse are determine by the fact that $\sin \theta=x / 3$.
(e) $\int e^{-2 x} \cos 5 x d x$

This integrand resembles a product and, as such, is an excellent candidate for integration by parts. Let

$$
\begin{array}{rlrl}
u & =e^{-2 x} & v^{\prime} & =\cos 5 x \\
u^{\prime} & =-2 e^{-2 x} & v & =\frac{1}{5} \sin 5 x
\end{array}
$$

and we have

$$
\begin{aligned}
I=\int e^{-2 x} \cos 5 x d x & =\int u v^{\prime} d x \\
& =u v-\int u^{\prime} v d x \\
& =e^{-2 x} \cdot \frac{1}{5} \sin 5 x-\int\left(-2 e^{-2 x}\right)\left(\frac{1}{5} \sin 5 x\right) d x \\
& =\frac{1}{5} e^{-2 x} \sin 5 x+\frac{2}{5} \int e^{-2 x} \sin 5 x d x
\end{aligned}
$$

We encounter another integrand that resembles a product and, as such, is an excellent candidate for integration by parts. Let

$$
\begin{array}{rlrl}
u & =e^{-2 x} & v^{\prime} & =\sin 5 x \\
u^{\prime} & =-2 e^{-2 x} & v & =-\frac{1}{5} \cos 5 x
\end{array}
$$

and we have

$$
\begin{aligned}
I & =\frac{1}{5} e^{-2 x} \sin 5 x+\frac{2}{5} \int u v^{\prime} d x \\
& =\frac{1}{5} e^{-2 x} \sin 5 x+\frac{2}{5}\left(u v-\int u^{\prime} v d x\right) \\
& =\frac{1}{5} e^{-2 x} \sin 5 x+\frac{2}{5}\left[\left(e^{-2 x}\right)\left(-\frac{1}{5} \cos 5 x\right)-\int\left(-2 e^{-2 x}\right)\left(-\frac{1}{5} \cos 5 x\right) d x\right] \\
& =\frac{1}{5} e^{-2 x} \sin 5 x-\frac{2}{25} e^{-2 x} \cos 5 x-\frac{4}{25} \int e^{-2 x} \cos 5 x d x
\end{aligned}
$$

At this point we might be tempted to panic, but you shouldn't be doing that now because you should recognize this phenomenon from all the times we encountered it before: the
new integral is just I ! So we can solve it as if it were a high school Algebra I problem:

$$
\begin{aligned}
I & =\frac{1}{5} e^{-2 x} \sin 5 x-\frac{2}{25} e^{-2 x} \cos 5 x-\frac{4}{25} I \\
\frac{29}{25} I & =\frac{1}{5} e^{-2 x} \sin 5 x-\frac{2}{25} e^{-2 x} \cos 5 x+C \\
I & =\frac{25}{29}\left(\frac{1}{5} e^{-2 x} \sin 5 x-\frac{2}{25} e^{-2 x} \cos 5 x\right)+C \\
& =\frac{5}{29} e^{-2 x} \sin 5 x-\frac{2}{29} e^{-2 x} \cos 5 x+C
\end{aligned}
$$

(f) $\int \tan \alpha \sec ^{3} \alpha d \alpha$

The powers are both odd, so separate out $\sec \alpha \tan \alpha$, so that we have

$$
I=\int \tan \alpha \sec ^{3} \alpha d \alpha=\int \sec ^{2} \alpha \cdot \sec \alpha \tan \alpha d \alpha
$$

The point of this is that now we can set $u=\sec \alpha$. We have $d u / d \alpha=\sec \alpha \tan \alpha$ and thus $d \alpha=d u / \sec \alpha \tan \alpha$. Hence

$$
I=\int u^{2} \cdot \sec \alpha \tan \alpha \frac{d u}{\sec \alpha \tan \alpha}=\int u^{2} d u=\frac{u^{3}}{3}+C=\frac{1}{3} \sec ^{3} \alpha+C .
$$

(g) $\int_{\text {This is actually a } u \text {-substitut }} \sin ^{2}(\sin (3 \zeta)) \cos (3 \zeta) d \zeta$

This is actually a u-substitution because there's a sine inside a sine, with its derivative (cosine) on the outside. Let $u=\sin (3 \zeta)$, so that $d u / d \zeta=3 \cos (3 \zeta)$, and we have $d \zeta=$ $d u / 3 \cos (3 \zeta)$. Hence

$$
I=\int \sin ^{2}(\sin (3 \zeta)) \cos (3 \zeta) d \zeta=\int \sin ^{2} u \cdot \cos (3 \zeta) \cdot \frac{d u}{3 \cos (3 \zeta)}=\frac{1}{3} \int \sin ^{2} u d u
$$

We apply a half-angle formula to obtain

$$
\begin{aligned}
I & =\frac{1}{3} \int \frac{1-\cos 2 u}{2} d u \\
& =\frac{1}{6} \int 1-\cos 2 u d u \\
& =\frac{1}{6}\left(u-\frac{1}{2} \sin 2 u\right)+C \\
& =\frac{1}{6} \sin (3 \zeta)-\frac{1}{12} \sin (2 \sin (3 \zeta))+C
\end{aligned}
$$

(h) $\int_{-\pi}^{\pi} \sin ^{11}(\phi) d \phi$

Don't try to solve this problem by computing $\int \sin ^{11}(\phi) d \phi$. It can be done, but it's an enormous waste of time. Rather, think about the geometry. At worst, you have a graphing calculator; take a glance at the graph:

The graph is symmetric, with an area above the graph equal to the area below it. So

$$
\int_{-\pi}^{\pi} \sin ^{11}(\phi) d \phi=0
$$

without any tedious work at all!
2. (30% of test) Use an integral formula to set up an integral to solve each problem. Do not evaluate the integral.
(a) Use the method of slicing to set up the volume of the solid whose base is the region between $y=x^{2}$, the x-axis, and the line $x=2$, and whose cross-sections perpendicular to the x axis are squares. (It will help to draw a picture, and you receive partial credit for a picture, so go ahead and try that first.)
The region we're looking at is

We form the solid from cross-sections that look something like this:

To compute volume by slicing, compute the area of each square, which is the y-value of $f(x)=x^{2}$; that is,

$$
V=\int_{a}^{b} A(x) d x=\int_{0}^{2} y^{2} d x=\int_{0}^{2}\left(x^{2}\right)^{2} d x=\int_{0}^{2} x^{4} d x
$$

(b) Use the method of disks and washers to set up the volume of the solid formed by rotating the region between $y=x^{2}$, the x-axis, and the line $x=2$, about the x-axis.

The region we're looking at is the same as the one above, but this time we're rotating it about the x-axis. Since we're using disks and washers, we integrate with respect to the same axis as the rotation. Hence

$$
V=\pi \int_{a}^{b} f(x)^{2} d x=\pi \int_{0}^{2}\left(x^{2}\right)^{2} d x=\pi \int_{0}^{2} x^{4} d x
$$

(c) Use the method of shells to set up the volume of the solid formed by rotating the region between $y=x^{2}$, the x-axis, and the line $x=2$, about the y-axis.
The region we're looking at is the same as the one above, but this time we're rotating it about the y-axis. Since we're using shells, we integrate with respect to the axis perpendicular to the rotation. Hence

$$
V=2 \pi \int_{a}^{b} x f(x) d x=2 \pi \int_{0}^{2} x\left(x^{2}\right) d x=2 \pi \int_{0}^{2} x^{3} d x
$$

3. (10% of test) Answer one of the two problems.
(a) For one of the three methods to compute the volume of a solid using integrals, explain how to derive the formula. Be sure to touch on each of the three or four common points I touched on in class and in the study guide.
I'll do volume by slicing; the others are explained similarly.
Take slices of the solid, each of width Δx. Assume the slices are a right prism; this introduces some error, but as n tends to ∞ the error will vanish. As each solid is a right prism, whose volume is $V=A h$, where A is the area of a cross section perpendicular to the height, we have

$$
V_{i}=A_{i} \cdot \Delta x
$$

as the volume of the i th slice. Hence, the solid's volume is

$$
V \approx \sum_{i=1}^{n} V_{i}=\sum_{i=1}^{n} A_{i} \cdot \Delta x
$$

To eliminate all error, let n tend to ∞ and we have the exact volume as

$$
V=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} A_{i} \Delta x=\int_{a}^{b} A(x) d x
$$

(b) Prove the reduction formula

$$
\int x^{n} e^{a x} d x=\frac{1}{a} x^{n} e^{a x}-\frac{n}{a} \int x^{n-1} e^{a x} d x, \quad a \neq 0 .
$$

The integral on the left looks like a product, so we'll try integration by parts with

$$
\begin{array}{rlrl}
u & =x^{n} & v^{\prime} & =e^{a x} \\
u^{\prime} & =n x^{n-1} & v & =\frac{1}{a} e^{a x}
\end{array}
$$

Hence
$\int x^{n} e^{a x} d x=\int u v^{\prime} d x=u v-\int u^{\prime} v d x=x^{n} \cdot \frac{1}{a} e^{a x}-\int\left(n x^{n-1}\right)\left(\frac{1}{a} e^{a x}\right) d x$, and it is not hard to see that this simplifies immediately to the desired right-hand side.

