
TEST 3

MAT 168

Directions: Solve as many problems as well as you can in the blue examination book, writing in
pencil and showing all work. Put away any cell phones; the mere appearance will give a zero.

1. (60% of test) Compute six of the antiderivatives indicated. (Each is worth 10%.) Some require
integration by u-substitution; others, integration by parts; still others, trigonometric tech-
niques, including trigonometric substitution; and many require multiple techniques, or the
same technique applied multiple times.

(a)
∫

ln3 x

x
dx

We’ll try u-substitution with u = lnx, because its derivative, du/dx = 1/x, also appears in
the integral. We have dx = x du. Hence∫

ln3 x

x
dx =

∫
u3

x
x du =

∫
u3 du =

u4

4
+ C =

ln4 x

4
+ C .

(b)
∫ e

1

x3 lnx dx

We’ll try integration by parts, because it looks like a product. The integral of lnx is hard,
so we’ll try

u = lnx v′ = x3

u′ =
1

x
v =

x4

4
and we have

I =

∫ e

1

x3 lnx dx =

∫ e

1

uv′ dx =

[
uv −

∫
u′v dx

]e
1

=

[
x4 lnx

4
−
∫

1

x
· x

4

4
dx

]e
1

=

[
x4 lnx

4
− 1

4

∫
x3 dx

]e
1

=

[
x4 lnx

4
− 1

4
· x

4

4

]e
1

=

(
e4��

�* 1
ln e

4
− e4

16

)
−

(
14
��
�* 0

ln 1

4
− 1

16

)

=
3e4 − 1

16
.
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(c)
∫

sin4 β dβ

The power is even, so we have to apply a half-angle formula:∫
sin4 β dβ =

∫ (
sin2 β

) (
sin2 β

)
dβ

=

∫ (
1− cos 2β

2

)(
1− cos 2β

2

)
dβ

=
1

4

∫
1− 2 cos 2β + cos2 2β dβ .

The �rst two terms are relatively easy to integrate. The third term, however, has (again)
an even power of cosine, so we need to use the half-angle formula again:∫

sin4 β dβ =
1

4

∫
1− 2 cos 2β +

1 + cos 4β

2
dβ

=
1

4

[
β − 2 · 1

2
sin 2β +

1

2

(
β +

1

4
sin 4β

)]
+ C

=
3

8
β − 1

4
sin 2β +

1

32
sin 4β + C .

(d)
∫

x2√
9− x2

dx

It would be unwise to try u-substitution with u = 9−x2, because its derivative,−2x, does
not appear in the integral. On the other hand, we do see the form a2−x2, which suggests
that we should try the substitution x = 3 sin θ. We have dx/dθ = 3 cos θ, and hence∫

x2√
9− x2

dx =

∫
9 sin2 θ√

9− 9 sin2 θ
· 3 cos θ dθ

= 9

∫
sin2 θ

�
�
√

9
√

1− sin2 θ
· �3 cos θ dθ

= 9

∫
sin2 θ

��
���

√
cos2 θ

·���cos θ dθ

= 9

∫
1− cos 2θ

2
dθ

=
9

2

(
θ − 1

2
sin 2θ

)
+ C .

It is not enough to leave our answer in terms of θ; we must rewrite in terms of x. We use
two facts. First,

x = 3 sin θ =⇒ θ = arcsin
x

3
.

Second,
sin 2θ = 2 sin θ cos θ .
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Hence∫
x2√

9− x2
dx =

9

2

(
θ − 1

2
sin 2θ

)
+C =

9

2

(
θ − 1

�2
· �2 sin θ cos θ

)
=

9

2

(
arcsin

x

3
− x

3
·
√

9− x2
3

)
,

where we determine that cos θ =
√
9−x2/3 using a right triangle whose length and hy-

potenuse are determine by the fact that sin θ = x/3.

(e)
∫
e−2x cos 5x dx

This integrand resembles a product and, as such, is an excellent candidate for integration
by parts. Let

u = e−2x v′ = cos 5x

u′ = −2e−2x v =
1

5
sin 5x

and we have

I =

∫
e−2x cos 5x dx =

∫
uv′ dx

= uv −
∫
u′v dx

= e−2x · 1

5
sin 5x−

∫ (
−2e−2x

)(1

5
sin 5x

)
dx

=
1

5
e−2x sin 5x+

2

5

∫
e−2x sin 5x dx .

We encounter another integrand that resembles a product and, as such, is an excellent
candidate for integration by parts. Let

u = e−2x v′ = sin 5x

u′ = −2e−2x v = −1

5
cos 5x

and we have

I =
1

5
e−2x sin 5x+

2

5

∫
uv′ dx

=
1

5
e−2x sin 5x+

2

5

(
uv −

∫
u′v dx

)
=

1

5
e−2x sin 5x+

2

5

[(
e−2x

)(
−1

5
cos 5x

)
−
∫ (
−2e−2x

)(
−1

5
cos 5x

)
dx

]
=

1

5
e−2x sin 5x− 2

25
e−2x cos 5x− 4

25

∫
e−2x cos 5x dx .

At this point we might be tempted to panic, but you shouldn’t be doing that now because
you should recognize this phenomenon from all the times we encountered it before: the
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new integral is just I! So we can solve it as if it were a high school Algebra I problem:

I =
1

5
e−2x sin 5x− 2

25
e−2x cos 5x− 4

25
I

29

25
I =

1

5
e−2x sin 5x− 2

25
e−2x cos 5x+ C

I =
25

29

(
1

5
e−2x sin 5x− 2

25
e−2x cos 5x

)
+ C

=
5

29
e−2x sin 5x− 2

29
e−2x cos 5x+ C .

(f)
∫

tanα sec3 α dα

The powers are both odd, so separate out secα tanα, so that we have

I =

∫
tanα sec3 α dα =

∫
sec2 α · secα tanα dα .

The point of this is that now we can set u = secα. We have du/dα = secα tanα and thus
dα = du/secα tanα. Hence

I =

∫
u2 ·((((((secα tanα

du

((((
((secα tanα

=

∫
u2 du =

u3

3
+ C =

1

3
sec3 α + C .

(g)
∫

sin2 (sin (3ζ)) cos (3ζ) dζ

This is actually a u-substitution because there’s a sine inside a sine, with its derivative
(cosine) on the outside. Let u = sin (3ζ), so that du/dζ = 3 cos (3ζ), and we have dζ =
du/3 cos(3ζ). Hence

I =

∫
sin2 (sin (3ζ)) cos (3ζ) dζ =

∫
sin2 u ·�����cos (3ζ) · du

3���
��cos (3ζ)

=
1

3

∫
sin2 u du .

We apply a half-angle formula to obtain

I =
1

3

∫
1− cos 2u

2
du

=
1

6

∫
1− cos 2u du

=
1

6

(
u− 1

2
sin 2u

)
+ C

=
1

6
sin (3ζ)− 1

12
sin (2 sin (3ζ)) + C .

(h)
∫ π

−π
sin11 (φ) dφ

Don’t try to solve this problem by computing
∫

sin11 (φ) dφ. It can be done, but it’s an
enormous waste of time. Rather, think about the geometry. At worst, you have a graphing
calculator; take a glance at the graph:
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The graph is symmetric, with an area above the graph equal to the area below it. So∫ π

−π
sin11 (φ) dφ = 0

without any tedious work at all!

2. (30% of test) Use an integral formula to set up an integral to solve each problem. Do not
evaluate the integral.
(a) Use the method of slicing to set up the volume of the solid whose base is the region between

y = x2, the x-axis, and the line x = 2, and whose cross-sections perpendicular to the x-
axis are squares. (It will help to draw a picture, and you receive partial credit for a picture,
so go ahead and try that �rst.)
The region we’re looking at is

We form the solid from cross-sections that look something like this:

To compute volume by slicing, compute the area of each square, which is the y-value of
f (x) = x2; that is,

V =

∫ b

a

A (x) dx =

∫ 2

0

y2 dx =

∫ 2

0

(
x2
)2
dx =

∫ 2

0

x4 dx .

(b) Use the method of disks and washers to set up the volume of the solid formed by rotating
the region between y = x2, the x-axis, and the line x = 2, about the x-axis.
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The region we’re looking at is the same as the one above, but this time we’re rotating it
about the x-axis. Since we’re using disks and washers, we integrate with respect to the
same axis as the rotation. Hence

V = π

∫ b

a

f (x)2 dx = π

∫ 2

0

(
x2
)2
dx = π

∫ 2

0

x4 dx .

(c) Use the method of shells to set up the volume of the solid formed by rotating the region
between y = x2, the x-axis, and the line x = 2, about the y-axis.
The region we’re looking at is the same as the one above, but this time we’re rotating it
about the y-axis. Since we’re using shells, we integrate with respect to the axis perpendic-
ular to the rotation. Hence

V = 2π

∫ b

a

xf (x) dx = 2π

∫ 2

0

x
(
x2
)
dx = 2π

∫ 2

0

x3 dx .

3. (10% of test) Answer one of the two problems.
(a) For one of the three methods to compute the volume of a solid using integrals, explain

how to derive the formula. Be sure to touch on each of the three or four common points I
touched on in class and in the study guide.
I’ll do volume by slicing; the others are explained similarly.
Take slices of the solid, each of width ∆x. Assume the slices are a right prism; this in-
troduces some error, but as n tends to ∞ the error will vanish. As each solid is a right
prism, whose volume is V = Ah, where A is the area of a cross section perpendicular to
the height, we have

Vi = Ai ·∆x
as the volume of the ith slice. Hence, the solid’s volume is

V ≈
n∑
i=1

Vi =
n∑
i=1

Ai ·∆x .

To eliminate all error, let n tend to∞ and we have the exact volume as

V = lim
n→∞

n∑
i=1

Ai∆x =

∫ b

a

A (x) dx .

(b) Prove the reduction formula∫
xneax dx =

1

a
xneax − n

a

∫
xn−1eax dx, a 6= 0.

The integral on the left looks like a product, so we’ll try integration by parts with
u = xn v′ = eax

u′ = nxn−1 v =
1

a
eax .

Hence∫
xneax dx =

∫
uv′ dx = uv −

∫
u′v dx = xn · 1

a
eax −

∫ (
nxn−1

)(1

a
eax
)
dx ,

and it is not hard to see that this simpli�es immediately to the desired right-hand side.


