
TEST 3: IN CLASS

MAT 168

Directions: Solve as many problems as well as you can in the blue examination book, writing in
pencil and showing all work. Put away any cell phones; the mere appearance will give a zero.

1. (50% of test) Compute five of the antiderivatives indicated. (Each is worth 10%.) Some
require integration by u-substitution; others, integration by parts; still others, trigonometric
techniques, including trigonometric substitution; and quite a few require multiple techniques.

(a)
∫

lnx

x
dx (b)

∫
sec4 θ tan2 θ dθ (c)

∫
x5 lnx dx

(d)
∫

cos4 α dα (e)
∫

x2√
9− x2

dx (f )
∫
e−2x cos 5x dx

(a)
∫

lnx

x
dx

Let u = lnx. We have du/dx = 1/x, so dx = x du and

I =

∫
u

�x
�x du =

u2

2
+ C =

(lnx)2

2
+ C .

(b)
∫

sec4 θ tan2 θ dθ

Since the secant’s power is even, rewrite as

I =

∫
sec2 θ · sec2 θ tan2 θ dθ .

Use the Pythagorean identity to rewrite the second pair of secants:

I =

∫
sec2 θ ·

(
1 + tan2 θ

)
tan2 θ dθ .

Now let u = tan θ. We have du/dθ = sec2 θ, as expected (this is why we rewrote all but
two secants), so dθ = dθ/sec2 θ and

I =

∫
���
sec2 θ ·

(
1 + u2

)
u2

du

���sec2 θ
=

∫
u2 + u4 du =

u3

3
+
u5

5
+ C =

tan3 θ

3
+

tan5 θ

5
+ C .

(c)
∫
x5 lnx dx
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It’s a product, and we don’t see the derivative of either x5 or of lnx in the integrand, so
try integration by parts. Let u = lnx and v′ = x5. Then u′ = 1/x and v = x6/6. So

I = uv −
∫
u′v dx =

x6 lnx

6
−
∫

1

x
· x

6

6
dx =

x6 lnx

6
−
∫
x5

6
dx =

x6 lnx

6
− x6

36
+ C .

(d)
∫

cos4 α dα

Since the powers of the cosine and the (invisible) sine are both even, we have to use
half-angle identities:

I =

∫ (
cos2 α

)2
dα =

∫ (
1 + cos 2α

2

)2

dα =
1

4

∫
1 + 2 cos 2α + cos2 2α dα .

We have to apply the half-angle identity again to the last summand:

I =
1

4

∫
1 + 2 cos 2α +

(
1 + cos 4α

2

)
dα .

Let’s split this into three integrals to make life a little easier:

I =
1

4

(∫
1 dα + 2

∫
cos 2α dα +

1

2

∫
1 + cos 4α dα

)
.

We’ll call the three integrals in the line above I1, I2, and I3. The first integral should be
easy: I1 =

∫
1 dα = α. For the second integral, we need the substitution u = 2α, so

du/dα = 2, so dα = du/2, and we have

I2 =

∫
cosu

du

2
=

sinu

2
+ C =

sin 2α

2
.

The third integral also needs a substitution, v = 4α, so dα = du/4, and we have

I3 =

∫
1 + cosu

du

4
=

1

4
(u+ sinu) + C = α +

sin 4α

4
.

Putting them all together, we have

I =
1

4

[
α + 2 · sin 2α

2
+

1

2

(
α +

sin 4α

4

)]
+ C =

3α

8
+

sin 2α

4
+

sin 4α

32
+ C .

(e)
∫

x2√
9− x2

dx

We see the expression 9 − x2, which looks like a2 − x2, which should make us think of
trigonometric substitution. Let x = 3 sin θ; we have dx/dθ = 3 cos θ, so dx = 3 cos θ dθ.
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That gives us

I =

∫
(3 sin θ)2√

9− (3 sin θ)2
3 cos θ dθ

=

∫
9 sin2 θ√

9− 9 sin2 θ
3 cos θ dθ

=

∫
9 sin2 θ√

9
(
1− sin2 θ

) 3 cos θ dθ

=

∫
9 sin2 θ

�����
3
√

cos2 θ
����3 cos θ dθ .

Since the powers of the (invisible) cosine and the sine are both even, we have to use
half-angle identities:

I = 9

∫
1− cos 2θ

2
dθ .

We need the substitution u = 2θ, so du/dθ = 2, so dθ = du/2. That gives us

I =
9

2

∫
1− cosu

du

2
=

9

4
(u− sinu) + C =

9

4
(2θ − sin 2θ) + C .

This by itself will not do, because it’s in terms of θ, and we need an answer in terms of
x. It’s easy to rewrite 2θ, since θ = arcsin (x/3). For sin 2θ, on the other hand, we use
the double-angle formula:

sin 2θ = 2 sin θ cos θ .

It’s easy to rewrite sin θ, since sin θ = x/3. That leaves cos θ, for which we need to use
right triangle properties. From sin θ = x/3, we know that there is a right triangle of
hypotenuse length 3 whose side opposite θ will have length x. The side adjacent to θ will
then have length

√
9− x2, so cos θ =

√
9−x2/3, and so

sin 2θ = 2 · x
3
·
√

9− x2
3

=
2x
√

9− x2
9

.

Putting it all together, we have

I =
9

2
arcsin

x

3
− x
√

9− x2
2

+ C .

(f )
∫
e−2x cos 5x dx

It’s a product, and we don’t see the derivative of either e−2x or cos 5x in the integrand,
so try integration by parts. Let u = e−2x and v′ = cos 5x. We have u′ = −2e−2x and
v = sin 5x/5, so

I = uv −
∫
u′v dx =

e−2x sin 5x

5
−
∫ (
−2e−2x

)(sin 5x

5

)
dx .
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The new integral is again a product, and we don’t see the derivative of either e−2x or
sin 5x in the integrand, so try integration by parts again. Let u = e−2x and v′ = sin 5x.
We have u′ = −2e−2x and v = −cos 5x/5, so

I =
e−2x sin 5x

5
+

2

5

[
−e
−2x cos 5x

5
−
∫ (
−2e−2x

)(
−cos 5x

5

)
dx

]
=
e−2x sin 5x

5
− 2e−2x cos 5x

25
− 4

25

∫
e−2x cos 5x dx

=
e−2x sin 5x

5
− 2e−2x cos 5x

25
− 4

25
· I .

We seem to be going in circles, but not really, as we can now solve for I :

29

25
· I =

e−2x sin 5x

5
− 2e−2x cos 5x

25

I =
25

29

(
e−2x sin 5x

5
− 2e−2x cos 5x

25

)
=

5e−2x sin 5x

29
− 2e−2x cos 5x

29
.

2. (50% of test) Let

I =

∫ π

0

sinx dx .

(a) (3%) Compute the exact value of I .
This should be straightforward:

I = − cosx|π0 = − (cos π − cos 0) = − (−1− 1) = − (−2) = 2 .

(b) (5%) Approximate I using midpoint approximation and n = 6 subintervals.
We have ∆x = (π−0)/6 = π/6. The midpoints are x∗i = a+ (i− 1/2) ∆x, so we have

I ≈
6∑
i=1

f (x∗i ) ∆x

=

(
sin

π

12
+ sin

3π

12
+ sin

5π

12
+ sin

7π

12
+ sin

9π

12
+ sin

11π

12

)
· π

6

≈ 2.02303 .

(c) (9%) Using the formula

EM ≤
k (b− a)

24
(∆x)2 ,

compute the upper bound for the error of the midpoint approximation. Comment on
how this estimate compares to the absolute error.
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First we need to find k ≥ |f ′′ (x)|, where f (x) is the integrand; that is, f (x) = sinx.
The second derivative of sinx is − sinx, and the maximum value of sinx on [0, π] is
y = 1. So k = 1.1 Thus

EM ≤
1 · (π − 0)

24
·
(π

6

)2
=

π3

864
≈ .0359 .

The absolute error of our approximation was in fact

EM = |2− 2.02303| = .02303 < .0359 ,

so the absolute error is, as expected, smaller than the estimate.
(d) (5%) Approximate I using trapezoid approximation and n = 6 subintervals.

We have ∆x = π/6. The endpoints of all intervals are x = a+ i∆x = iπ/6, so we have

I ≈ ∆x

2
[f (x0) + 2f (x1) + 2f (x2) + 2f (x3) + 2f (x4) + 2f (x5) + f (x6)]

=
π

12

[
sin 0 + 2 sin

π

6
+ 2 sin

2π

6
+ 2 sin

3π

6
+ 2 sin

4π

6
+ 2 sin

5π

6
+ sin

6π

6

]
≈ 1.95410 .

(f ) (9%) Using the formula

ET ≤
k (b− a)

12
(∆x)2 ,

compute the upper bound for the error of the trapezoid approximation. Comment on
how this estimate compares to the absolute error.
Trapezoid approximation uses the same value of k as midpoint approximation, so

ET ≤
1 · (π − 0)

12
·
(π

6

)2
=

π3

432
≈ .0718 .

The absolute error of our approximation was in fact

ET = |2− 1.95410| = 0.04590 < .0718 ,

so the absolute error is, as expected, smaller than the estimate.
(e) (5%) Approximate I using Simpson’s Rule and n = 6 subintervals.

We have ∆x = π/6. The endpoints of all intervals are x = a+ i∆x = iπ/6, so we have

I ≈ ∆x

3
[f (x0) + 4f (x1) + 2f (x2) + 4f (x3) + 2f (x4) + 4f (x5) + f (x6)]

=
π

18

[
sin 0 + 4 sin

π

6
+ 2 sin

2π

6
+ 4 sin

3π

6
+ 2 sin

4π

6
+ 4 sin

5π

6
+ sin

6π

6

]
≈ 2.00086 .

1Don’t just check the endpoints. It’s the maximum value on the interval, so you have to think about the
function’s behavior over the entire interval. Sometimes the interval’s maximum occurs at an endpoint but not
usually.
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(f ) (9%) Using the formula

ES ≤
k (b− a)

180
(∆x)4 ,

compute the upper bound for the error of the midpoint approximation. Comment on
how this estimate compares to the absolute error.
First we need to find k ≥

∣∣f (4) (x)
∣∣, where f (x) is the integrand; that is, f (x) = sinx.

The fourth derivative of sinx is again sinx, and the maximum value of sinx on [0, π] is
y = 1. So k = 1.2 Thus

ES ≤
1 · (π − 0)

180
·
(π

6

)4
=

π5

233280
≈ .0013 .

The absolute error of our approximation was in fact

ES = |2− 2.00086| = .00086 < .0013 ,

so the absolute error is, as expected, smaller than the estimate.
(g) (5%) Find the value of n that guarantees ES < 10−3.

Again, we use k = 1, but now we want to find n, which means we don’t know ∆x. All
we can do is substitute ∆x = (π−0)/n, and solve

10−3 ≤ 1 · (π − 0)

180
·
(π
n

)4
=

π5

180n4
.

Isolate n, obtaining

10−3 · 180n4 ≤ π5 =⇒ n4 ≤ π5

10−3180
=⇒ n ≤ 4

√
π5

10−3180
≈ 6.4 .

This means we have to use more than n = 6 subintervals. Simpson’s Rule requires an
even number of subintervals, so we skip over n = 7 and conclude with n = 8.

2I made f (x) a little easy to differentiate for this problem. You should expect f (x) on the final to be somewhat
harder; in particular, expect to use the chain rule.


