Integral

September 11, 2017

Find or estimate $\int_{-2}^{2} x^{3}-x d x$ using
(a) geometry,
(b) four left endpoints,
(c) four right endpoints, and
(d) the definition.

Solution:
(a) From the geometry, we see that the curve is symmetric in such a way that the area of the regions above and below the x-axis cancel. Hence $\int_{-2}^{2} x^{3}-x d x=0$.

(b) Sample points for left endpoints are defined as

$$
x_{i}^{*}=a+(i-1) \Delta x \quad \text { where } \quad \Delta x=\frac{b-a}{n} .
$$

With $a=-2, b=2$, and $n=4$, we have

$$
\Delta x=\frac{2-(-2)}{4}=1 \quad \text { and } \quad x_{i}^{*}=-2+(i-1) \cdot 1=i-3
$$

Hence

$$
\begin{aligned}
\int_{-2}^{2} f(x) d x & \approx \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x \\
& =[f(1-3)+f(2-3)+f(3-3)+f(4-3)] \cdot 1 \\
& =f(-2)+f(-1)+f(0)+f(1) \\
& =-6+0+0+0 \\
& =-6
\end{aligned}
$$

(c) Sample points for right endpoints are defined as

$$
x_{i}^{*}=a+i \Delta x \quad \text { where } \quad \Delta x=\frac{b-a}{n} .
$$

With $a=-2, b=2$, and $n=4$, we have

$$
\Delta x=\frac{2-(-2)}{4}=1 \quad \text { and } \quad x_{i}^{*}=-2+i \cdot 1=i-2
$$

Hence

$$
\begin{aligned}
\int_{-2}^{2} f(x) d x & \approx \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x \\
& =[f(1-2)+f(2-2)+f(3-2)+f(4-2)] \cdot 1 \\
& =f(-1)+f(0)+f(1)+f(2) \\
& =0+0+0+6 \\
& =6
\end{aligned}
$$

(d) For the definition, we will use right endpoints, which should be easiest. However, we no longer have a constant value of n, so we are looking at

$$
\Delta x=\frac{b-a}{n}=\frac{2-(-2)}{n}=\frac{4}{n} \quad \text { and } \quad x_{i}^{*}=a+i \Delta x=-2+\frac{4 i}{n} .
$$

By definition,

$$
\begin{aligned}
\int_{-2}^{2} f(x) d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(-2+\frac{4 i}{n}\right) \cdot \frac{4}{n} \\
& =\lim _{n \rightarrow \infty} \frac{4}{n} \sum_{i=1}^{n}\left[\left(-2+\frac{4 i}{n}\right)^{3}-\left(-2+\frac{4 i}{n}\right)\right] \\
& =\lim _{n \rightarrow \infty} \frac{4}{n} \sum_{i=1}^{n}\left[\left(-8+\frac{48 i}{n}-\frac{96 i^{2}}{n^{2}}+\frac{64 i^{3}}{n^{3}}\right)+\left(2-\frac{4 i}{n}\right)\right] \\
& =\lim _{n \rightarrow \infty} \frac{4}{n} \sum_{i=1}^{n}\left(-6+\frac{44 i}{n}-\frac{96 i^{2}}{n^{2}}+\frac{64 i^{3}}{n^{3}}\right) \\
& =\lim _{n \rightarrow \infty} \frac{4}{n}\left[\sum_{i=1}^{n}(-6)+\frac{44}{n} \sum_{i=1}^{n} i-\frac{96}{n^{2}} \sum_{i=1}^{n} i^{2}+\frac{64}{n^{3}} \sum_{i=1}^{n} i^{3}\right] \\
& =\lim _{n \rightarrow \infty} \frac{4}{n}\left[-6 n+\frac{44}{n} \times \frac{n(n+1)}{2}-\frac{96}{n^{2}} \times \frac{n(n+1)(2 n+1)}{6}+\frac{64}{n^{3}} \times \frac{n^{2}(n+1)^{2}}{4}\right] \\
& =\lim _{n \rightarrow \infty}\left[-24+\frac{88 n(n+1)}{n^{2}}-\frac{64 n(n+1)(2 n+1)}{n^{3}}+\frac{64 n^{2}(n+1)^{2}}{n^{4}}\right] \\
& =-24+88-64 \times 2+64 \\
& =0
\end{aligned}
$$

("Typos" in class: neglected to multiply 4 to every term in the third line from the bottom, and the -6 changed to a 6 at one point.

