MAT 168 TEST 2 FORM A (APPLICATIONS OF INTEGRALS)

Directions: Solve each required problem on a separate sheet of paper. Use pencil and show all work; I deduct points for using pen or skipping important steps. Cell phones are not allowed; you must shut off your cell phone. Some problems are worth more than others. I encourage you to ask questions.
(1) Consider the following solid: its cross-sections are squares whose diagonals lie on the $x-y$ plane; the solid is bounded above and below by the curves $10 / x$ and $-10 / x$; and the solid is bounded left and right by the lines $x=1$ and $x=5$. (See Figure 0.1.) Find the volume of the solid.

Figure 0.1.

First off, isn't that an awesome graphic? I wish I remembered making it. Anyway, we can find the volume by slicing. Any of the solid's cross-sections perpendicular to the $x-y$ plane is a square. The diagonal of the square has height $10 / x-(-10 / x)$, or $20 / x$. So the volume is

$$
V=\int_{1}^{5} \frac{20}{x} d x=20 \ln |x|_{1}^{5}=20\left(\ln 5-\ln \mathrm{T}^{-1}\right)^{0}=20 \ln 5 .
$$

(2) The region defined by the y-axis and the functions $f(x)=\sqrt{x}$ and $g(x)=2$ is rotated about the x-axis. Find the volume of the solid (a) using disks, and (b) using shells.

First let's look at a sketch of the region in question.

Disks: Finding volume by disks integrates along the same axis as the axis of rotation, with a rectangle perpendicular to the axis of rotation...

...so we need $\int \ldots d x$. Moreover, we need washers, because rotating that rectangle leaves a hole. The outer disk's volume will be $\pi \int_{a}^{b} 2^{2} d x$, while the inner disk's radius will be $\pi \int_{a}^{b} \sqrt{x}^{2} d x$. The interval begins at the x-value $a=0$, and ends where f and g intersect:

$$
\begin{aligned}
\sqrt{x} & =2 \\
x & =4 .
\end{aligned}
$$

Hence $b=4$ and
$V=\pi \int_{0}^{4} 4 d x-\pi \int_{0}^{4} x d x=\left.\pi\left(4 x-\frac{x^{2}}{2}\right)\right|_{0} ^{4}=\pi\left[\left(16-\frac{16}{2}\right)-(0-0)\right]=8 \pi$.

Shells: Finding volume by shells integrates along the axis perpendicular to the axis of rotation, with a rectangle parallel to the axis of rotation...

\ldots so we need $\int \ldots d y$. The interval begins at the y-value $a=0$, and ends at the y-value $b=2$. Hence

$$
V=2 \pi \int_{0}^{2} y \cdot y^{2} d y=2 \pi \int_{0}^{2} y^{3} d y=\left.2 \pi \cdot \frac{y^{4}}{4}\right|_{0} ^{2}=2 \pi\left(\frac{16}{4}-0\right)=8 \pi
$$

We found the same answer both ways, which is a good sign.
(3) Set up but do not solve an integral to find the circumference of a circle. (Hint: Another way of looking at this is that I'm asking you to find the arclength of the circle.)

The equation of a circle whose center is $(0,0)$ and whose radius is r is $x^{2}+y^{2}=r^{2}$. If we find the arclength of the top half of the circle, then we can find the circumference simply by multiplying by 2 . The top half of the circle is described by $y=\sqrt{r^{2}-x^{2}}$, and the giving us the arclength

$$
s=\int_{-r}^{r} \sqrt{1+\left(\frac{-2 x}{2 \sqrt{r^{2}-x^{2}}}\right)^{2}} d x=\int_{-r}^{r} \sqrt{1+\frac{x^{2}}{r^{2}-x^{2}}} d x
$$

The problem does not ask you to compute the integral, but you can:

$$
\begin{aligned}
s & =\int_{-r}^{r} \sqrt{\frac{\left(r^{2}-x^{2}\right)+x^{2}}{r^{2}-x^{2}} d x} \\
& =\int_{-r}^{r} \sqrt{\frac{r^{2}}{r^{2}-x^{2}}} d x \\
& =\int_{-r}^{r} \frac{r}{\sqrt{r^{2}-x^{2}}} \\
& =\int_{-r}^{r} \frac{1}{\sqrt{1-\left(\frac{x}{r}\right)^{2}}} d x \\
& =\left.r \arcsin \left(\frac{x}{r}\right)\right|_{-r} ^{r} \\
& =r(\arcsin 1-\arcsin (-1)) \\
& =r(0-(-\pi)) \\
& =\pi r .
\end{aligned}
$$

The circumference of a circle is thus $2 \times \pi r$.
(4) Find the center of mass of a thin plate covering the region bounded below by the parabola $y=x^{2}$ and above by the line $y=x$, if the plate's density at any point (x, y) is $\delta(x)=12 x$. (Note: If you cannot remember the relevant formulas, you can "buy" them from me at a small penalty.)

Omit.
(5) Explain why the formula to find the volume of a surface of revolution by shells is $V=$ $2 \pi \int_{a}^{b} x f(x) d x$. Your explanation should begin with an approximation by finite sums, using a diagram to illustrate the approximation.

I added a lot more than I expect from you on the test, so the absolute minimum is in bold.

We want to find the volume of the solid formed by rotating $f(x)$ about the y-axis. (We know it's the y-axis because the integral is with respect to x and a volume by shells is integrated along the axis perpendicular to the axis of rotation.)

When we rotate the indicated rectangle about the y-axis, we obtain something akin to a round shell.

Slice the shell and unroll to obtain a rectangle, so the shell's volume is roughly equivalent to that of a rectangular prism. The rectangle's width is the shell's circumference and the rectangle's length is the shell's height. The shell has radius x, so its circumference is $2 \pi x$. The shell's height is $f(x)$. The shell's volume is thus

$$
V_{i}=\underbrace{2 \pi x_{i}}_{\text {width }} \times \underbrace{f\left(x_{i}\right)}_{\text {length }} \times \underbrace{\Delta x}_{\text {depth }} .
$$

That makes the solid's volume approximately

$$
V \approx \sum_{i=1}^{n} 2 \pi x_{i} f\left(x_{i}\right) \Delta x
$$

To avoid error, take the limit as $n \rightarrow \infty$, and we have an integral formula:
$V=\lim _{n \rightarrow \infty} \sum_{i=1}^{\infty} 2 \pi x_{i} f\left(x_{i}\right) \Delta x=\int_{a}^{b} 2 \pi x f(x) d x=2 \pi \int_{a}^{b} x f(x) d x$.

