
TEST 2 FORM A

MAT 168

Directions: Solve as many problems as well as you can in the blue examination book, writing in
pencil and showing all work. Put away any cell phones; the mere appearance will give a zero.

1. Let A (x) =
∫ x

0
f (t) dt, where the graph of f is shown at right.

(a) Estimate A (0), A (1), and A (2).
Remember that A is the integral, hence the area under the
curve, from 0 to x. HenceA (0) is the area from 0 to 0, which
is nothing, so

A (0) = 0 .

Meanwhile, A (1) corresponds to the area of a trapezoid of
“height” 1 and of “bases” 2.5 and 1.5, so

A (1) =
1

2
· 1 · (2.5 + 1.5) = 2 .

(You can also count the number of boxes and divide by 4 —
notice that there are 4 boxes in 1 square unit!) Finally, A (2) adds to our trapezoid another
trapezoid and a triangle, so

A (2) = A (1) +

[
1

2
· 1
2
· (1.5 + .5)

]

+

(
1

2
· 1
4

)

= 2 + .5 + .75 = 3.25 .

(b) Over what interval is A increasing?
We see from the numbers that A is increasing over [0, 2].
Another way of looking at this is that the graph of f always lies above the x-axis on the
interval [0, 2]. It starts to decrease after x = 2 because the graph goes below the x-axis.

(c) Where does A reach its maximum?
As noted, A is increasing from [0, 2], so A reaches its maximum at x = 2.

2. Simplify the derivative or antiderivative, as indicated.

(a)

∫
x5 − x

x2
dx

This integral becomes easy if you split it into a sum fractions, which you can do when
you’re splitting a sum in the numerator:

∫
x5 − x

x2
dx =

∫

x3 − 1

x
dx =

x4

4
− ln |x| + C .
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(b)

∫

e5x dx

We can integrate eu, so let u = 5x. We have

du

dx
= 5 =⇒ dx =

du

5
.

Hence
∫

e5x dx =

∫

eu
du

5
=

1

5
eu + C =

1

5
e5x + C .

(c)

∫ 3

1

cos
(π

2
· x

)

dx

We can integrate cosu, so let u = πx/2. We have

du

dx
=

π

2
=⇒ dx =

2 du

π
.

Moreover, the limits of integration change from

x = 1 to u =
π

2
· 1 =

π

2
and x = 3 to u =

π

2
· 3 =

3π

2
.

Hence
∫ 3

1

cos
(π

2
· x

)

=

∫ 3π

2

π

2

cosu
2 du

π
=

2

π
sin u

∣
∣
∣
∣

3π

2

π

2

=
2

π

(

sin
3π

2
− sin

π

2

)

=
2

π
(−1− 1) = −4

π
.

(d)

∫

(sin θ + cos θ)2 dθ

This requires us �rst to expand the product:

I =

∫

(sin θ + cos θ)2 dθ =

∫

sin2 θ + 2 sin θ cos θ + cos2 θ dθ .

Recall the Pythagorean identity, sin2 θ + cos2 θ = 1. We use that to simplify our integral:

I =

∫

1 + 2 sin θ cos θ dθ .

The integral of 1 is easy; it simply gives us θ. For the other term, let u = sin θ. We have

du

dθ
= cos θ =⇒ dθ =

du

cos θ
.

Hence

I = θ +

∫

2u✘✘✘cos θ · du

✘✘✘cos θ
= θ +

∫

2u du = θ + ✁2 ·
u2

✁2
+ C = θ + sin2 θ + C .

Remark: It is possible that you did it a di�erent way, and came up with

I = θ − cos2 θ + C .

This is actually the same answer, because in the second case we can write

I = θ +
(
− cos2 θ + 1

)
+ (C − 1) = θ + sin2 θ + (C − 1) .

Since C can be any constant, this is actually the same as the �rst answer. (A computer
algebra system I use came up with the second answer, which is why I thought about this.)
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(e)

∫ 1/3

0

1

9t2 + 1
dt

We can integrate 1/(1+u2), so let u = 3t. We have

du

dt
= 3 =⇒ dt =

du

3
.

Moreover, the limits of integration change from

x = 0 to u = 3 · 0 = 0 and x =
1

3
to u = 3 · 1

3
= 1 .

Hence
∫ 1

3

0

1

9t2 + 1
dt =

∫ 1

0

1

1 + u2
· du
3

=
1

3
arctan u

∣
∣
∣
∣

1

0

=
1

3
(arctan 1− arctan 0) =

1

3
·
√
2

2
=

√
2

6
.

(f)

∫
3t

9t2 + 1
dt

One small change makes a big di�erence! We can integrate 1/u, so let u = 9t2 + 1. We
have

du

dt
= 18t =⇒ dt =

du

18
.

Hence
∫

3t

9t2 + 1
dt =

∫
3t

u
· du
18t

=
1

6

∫
1

u
du =

1

6
ln |u|+C =

1

6
ln
(
9t2 + 1

)
+C .

(We don’t need an absolute value because 9t2 + 1 > 0 for all t.)

(f)
d

dx

∫ 2x

0

et
2

dt

This is a derivative of an integral, not just an integral. You can’t actually compute this
integral, in fact! So we have to use the Fundamental Theorem of Calculus, Part II:

d

dx

∫ 2x

0

et
2

dt = e(2x)
2 ·2
︸︷︷︸

Chain

.

Do only one of questions 3 or 4.
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3. Find the region between the curves f (x) = 9− x2 and g (x) = x− 3.
No one seems to have noticed the typo: “Find the area of the region between the curves. . . ”,
but that is what was meant. To do this, �rst �nd the intersections:

9− x2 = x− 3 =⇒ 0 = x2 + x− 12 =⇒ 0 = (x+ 4) (x− 3) =⇒ x = 3,−4 .

The area between the curves is thus
∫ 3

−4

(
9− x2

)
− (x− 3) dx =

∫ 3

−4

−x2 − x+ 12 dx

=

(

−x3

3
− x2

2
+ 12x

)∣
∣
∣
∣

3

−4

=

(

−27

3
− 9

2
+ 12 (3)

)

−
(

−−64

3
− 16

2
+ 12 (−4)

)

= −91

3
+

7

2
+ 12 · 7

=
343

6
.

4. If the marginal cost of producing b hamburgers at your local Burger Mac is MC (b) = eb/4 −
10b+100 dollars, �nd the net change in cost of increasing production from 10 to 20 hamburgers.
Round to the nearest cent.
Marginal cost is the cost of producing one additional unit. It is approximately equal to the

derivative. Since net cost is the accumulation of the derivative of cost, we can approximate it
using the accumulation of marginal cost. In other words, we can compute net cost using the
integral of marginal cost:

C (20)− C (10) =

∫ 20

10

MC (b) db

=

∫ 20

10

e
b

4 − 10b+ 100 db

=
(

4e
b

4 − 5b2 + 100b
)∣
∣
∣

20

10

=
[(
4e5 − 5 · 400 + 100 · 20

)
−

(
4e2.5 − 5 · 100 + 100 · 10

)]

≈ 44.92.

So the net change in cost is approximately $44.92.
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6. There are two Mean Value Theorems in Calculus.
(a) Give a precise statement of the Mean Value Theorem for Integrals.

If the function f is continuous on [a, b], then we can �nd c ∈ (a, b) such that

f (c) =
1

b− a

∫ b

a

f (x) dx .

You can also say, “. . . such that

f (c) · (b− a) =

∫ b

a

f (x) dx .

(b) Give a geometric description of the Mean Value Theorem for Integrals.
If the function f is unbroken on [a, b], then we can �nd an x-value in (a, b)whose y-value
is the average value of f on [a, b].
You can also say, “. . .we can �nd an x-value c ∈ (a, b) such that the area under f is the
same as a rectangle whose width is c’s y-value and whose length is b− a.

(c) Suppose f (x) = cos (πx/2). Find a point c ∈ (1, 3) such that f (c) is the average value of
f on [1, 3].
We basically have to apply MVTI. We want some c ∈ (1, 3) such that

f (c) =
1

3− 1

∫ 3

1

cos
(πx

2

)

.

We already computed this integral! See 1(c). So we want some c such that

cos
(πc

2

)

=
1

2
·
(

−4

π

)

︸ ︷︷ ︸

see 1(c)

cos
(πc

2

)

= −2

π
πc

2
= cos−1

(

−2

π

)

c =
2

π
cos−1

(

−2

π

)

.

You can see the relationship when we plot the curve f (x) and the line y = f (c):

(d) (Bonus) Give a geometric statement of the Mean Value Theorem for Derivatives.
If the function f is unbroken on [a, b] and smooth on (a, b), then we can �nd an x-value
c ∈ (a, b) such that the slope of the line tangent to f at c is the same as the slope of f ’s
secant line on [a, b].
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(e) (Bonus)We used the Mean Value Theorem for Derivatives to prove the Fundamental The-
orem of Calculus. However, we didn’t use it directly, but rather indirectly; that is, we used
one of its consequences. I have placed the proof on the back of this test [here, below the
solution]. Indicate which line(s) use(s) the Mean Value Theorem for Derivatives indirectly.
Line 4 is the line in question. To be precise, FTC Part I tells us that the derivative ofA is f ;
we just said in (3) thatF is an antiderivative of f , soA andF have the same derivative. The
book’s Theorem 4.11 tells us that any two functions with the same derivative di�er only
by a constant: this gives us the conclusion of Line 4, but Theorem 4.11 is a consequence
of the Mean Value Theorem for Derivatives.

Fundamental Theorem of Calculus, Part II.
∫ b

a
f (x) dx = F (b) − F (a), where F is any

antiderivative of f .

Proof.

(1) For the sake of convenience write A (x) =
∫ x

a
f (t) dt.

(2) Notice that A is an antiderivative of f .
(3) Let F be any antiderivative of f .
(4) By FTC Part I, A and F di�er only by a constant, C .
(5) Hence F (a) = A (a) + C and F (b) = A (b) + C .
(6) By substitution, F (b)− F (a) = [A (b) + C]− [A (a) + C] .

(7) By cancellation, F (b)− F (a) =
∫ b

a
f (t) dt−

∫ a

a
f (t) dt.

(8) But
∫ a

a
f (t) dt = 0 because it has no actual area.

(9) Hence F (b)− F (a) =
∫ b

a
f (t) dt. �


