
MAT 168 FINAL EXAM

Directions: Solve each problem. Use pencil and show all work; I deduct points for using pen or
skipping important steps. Cell phones are not allowed, not even as calculators; you must shut
o� your cell phone. If you �nd a problem challenging, save it for later and �nd something you
can do more easily, to avoid running out of time. Some problems are worth more than others. I
encourage you to ask questions.

Name:



Part 1: Limits and derivatives

1.1. What does it mean for a function f (x) to be di�erentiable on an interval [a, b]? Give both a
geometric and an algebraic de�nition.
geometric: the graph of f is smooth on (a, b); put another way, it has no breaks, corners,

or kinks
algebraic: we can �nd the derivative of f at any point in (a, b); put another way, one of

the following limits exists at every c ∈ (a, b) (and since they are equivalent, all of them
exist):

lim
∆x→0

∆y

∆x
= lim

h→0

f (c+ h)− f (c)

h
= lim

x→c

f (x)− f (c)

x− c
.

1.2. State the di�erence between a “proper” and an “improper” integral.
A proper integral has �nite limits of integration and no asymptotes. An improper integral

has an in�nite limit of integration or an asymptote.

1.3. Suppose we want to approximate a positive root of x3−2x2−4x+7 using Newton’s Method.
(a) Why would x0 = 2 be a catastrophic place to start? (There are at least two reasons, but

I’ll take just one.)
Let’s look at the graph.

2

(1) Consider the derivative, 3x2−4x−4; at x = 2 it is 3×22−4×2−4 = 0. In other
words, the tangent line is horizontal, and has no root, so it will not approximate a
root of the curve. Another way of saying this is that you end up with division by
zero in the formula xi − f(xi)/f ′(xi).

(2) The point (2, f (2)) appears in a “bowl”, and bowls can lead Newton’s method into
in�nite loops. (To see why, shift the graph up so that the bowl is above the x-axis,
and experiment with the behavior of the tangent lines.)

(a) Find the �rst four approximations when we start with x0 = 1, instead.
x1 = 1.400, x2 = 1.4602, x3 = 1.4626, x4 = 1.4626

(b) Is the last approximation correct to the nearest thousandth place? Why or why not?
We believe the approximation is correct to the nearest thousandth because the decimals
approximation has begun to repeat there — in fact, it repeats even in the ten and hundred
thousandth place!



1.4. Use geometry to �nd
∫ b

0
cx dx, where b and c are both positive. Some words should explain

the reasoning.
The graph of the function is a line whose slope is c and whose y-intercept is 0. Over

the interval [0, b], the geometric �gure is a triangle, either above or below the x-axis. For
instance:

The triangle’s base has length b. The triangle’s height has length bc. From the formula for
the area of a triangle we conclude that∫ b

0

cx dx =
1

2
b2c .

1.5. Compute the following limits. Use L’Hospital’s Rule only when necessary.

(a) lim
x→1

3 (x− 1)

lnx

lim
x→1

3 (x− 1)↗
0

lnx↘0

L’H
= lim

x→1

3
1/x

= 3

(b) lim
x→1−

x+ 1

x− 1

lim
x→1−

x+ 1↗
2

x− 1↘0−

= −∞

(c) lim
x→0+

x cot 2x

lim
x→0+

x cot 2x↗
0·∞

= lim
x→0+

x↗
0

tan 2x↘0

L’H
= lim

x→0+

1

2 sec2 2x
=

1

2

(d) lim
x→0+

(1 + x)
3
x

Let y = (1 + x)
3/x and consider ln y = (3/x) ln (1 + x). We have

lim
x→0+

ln y = lim
x→0+

3 ln (1 + x)↗
0

x↘0

L’H
== lim

x→0+

3/1+x

1
= 3 .

However, we don’t want the limit of ln y; we want the limit of y. We can �nd that:
lim
x→0+

y = lim
x→0+

eln y = elimx→0+ ln y = e3 .



(e) The �gure at right shows two functions that
intersect at (0, 0). Estimate

lim
x→0

f (x)

g (x)
.

Precisely because the functions inter-
sect at (0, 0) we know that we can use
L’Hôpital’s Rule. To �nd the values of the
derivative at a point, sketch in a tangent
line; you should have f ′ (0) = −2 and
g′ (0) = 1. Hence

lim
x→0

f (x)↗
0

g (x)↘0

L’H
= lim

x→0

f ′ (0)

g′ (0)
=
−2

1
= −2 .

f

g

1.6. We want to �nd or approximate

A =

∫ 2

0

1− x2 dx

without using integration shortcuts. Certain useful formulas for this task appear on the fol-
lowing page.
(a) Sketch the region in question. Do you think the integral be positive or negative? Why?

The integral should be negative, as it looks as if there is more area below the axis than
above.

(b) Use high school geometry to approximate the integral. Explain your work with words.
To be clear: I do not want anything sophisticated here. I do not expect you to �nd the exact
area in this step, or even to �nd a particularly accurate approximation. Your grade depends
on how intelligently you use ideas of high school geometry to approximate the area. As long
as it makes sense, you earn full credit.
I would approximate this with a quarter circle of radius 1 and a triangle of length 1 and
height 3. The triangle, however, will have negative area because it lies below the x-axis.

A ≈ 1

4
× π × 12 +

1

2
× 1× 3 =

π

4
+

3

2
.



(c) Use four rectangles and left endpoints to approximate A.

A ≈
[(

1− 02
)

+
(
1− (1/2)2)+

(
1− 12

)
+
(
1− (3/2)2)]× 1

2

= [1 + (3/4) + 0 + (−5/4)]× 1

2
= 1/8

(d) Use four rectangles and midpoints to approximate A.

A ≈
[(

1− (1/4)2)+
(
1− (3/4)2)+

(
1− (5/4)2)+

(
1− (7/4)2)]× 1

2

= [(15/16) + (7/16) + (−9/16) + (−33/16)]× 1

2
= −5/8

(e) Use the de�nition of the integral to �nd the exact value of A.
Remark: Use the de�nition of the integral, not an integration shortcut. Using an
integration shortcut will earn you 0 points even if you �nd the correct value.∫ 2

0

(
1− x2

)
dx = lim

n→∞

n∑
i=1

f (a+ i∆x) ∆x

= lim
n→∞

n∑
i=1

f

(
i · 2

n

)
· 2

n

= lim
n→∞

n∑
i=1

[
1−

(
2i

n

)2
]
· 2

n

= lim
n→∞

n∑
i=1

(
1− 4i2

n2

)
· 2

n

= lim
n→∞

(
n∑
i=1

2

n
−

n∑
i=1

8i2

n3

)

= lim
n→∞

(
2

n

n∑
i=1

1− 8

n3

n∑
i=1

i2

)

= lim
n→∞

(
2

n
× n− 8

n3
× n (n+ 1) (2n+ 1)

6

)
= lim

n→∞

(
2− 16n3 + stu�

6n3

)
= 2− 16

6

= −2

3
.



(f) Why do we expect (d) to be more accurate than (c), and (e) to be exact?
We expect (d) to be more accurate because the midpoint method is more accurate. (If
pressed, I would say that most of the error cancels out in each rectangle, whereas with
left and right endpoints, in general error accumulates across the rectangles.)
We expect (e) to be exact because increasing the number of rectangles reduces the error,
and taking the limit eliminates the error completely.

Left endpoints: x∗i = a+ (i− 1) ∆x
Right endpoints: x∗i = a+ i∆x
Midpoints: x∗i = a+

(
i− 1

2

)
∆x

Sum shortcuts:
n∑
i=1

c = cn
n∑
i=1

i =
n (n+ 1)

2

n∑
i=1

i2 =
n (n+ 1) (2n+ 1)

6

n∑
i=1

i3 =
n2 (n+ 1)2

4

2.4. Compute eight of the antiderivatives indicated. Some require integration by u-substitution;
others, integration by parts; still others, trigonometric techniques, including trigonometric
substitution. Most are proper, but a few were brought up without manners and are thus
improper. As in real life, it’s not always obvious who’s proper and who ain’t.
(a)
∫

cos4 x sinx dx
Let u = cosx. Then du/dx = − sinx. By substitution,

I =

∫
u4 sinx× du

− sinx
= −

∫
u4 du = −u

5

5
+ C .

(b)
∫ √

1− x2 dx
Let x = sinα. Then dx/dα = cosα. By substitution,

I =

∫ √
1− sin2 α cosα dα =

∫
cos2 α dα =

∫
1 + cos 2α

2
dα =

1

2

(
α +

sin 2α

2

)
+ C .

We need to convert back to x. We know that x = sinα, so α = sin−1 x. That gives us

I =
1

2

(
sin−1 x+

sin
(
2 sin−1 x

)
2

)
+ C .

To simplify the second term, �rst use a double-angle identity:

I =
1

2

(
sin−1 x+

2 sin
(
sin−1 x

)
cos
(
sin−1 x

)
2

+ C

)
.

Certainly sin
(
sin−1 x

)
= x. To simplify cos

(
sin−1 x

)
, look at it this way: we want to

�nd cos β where β = sin−1 x, or in other words, where sin β = x/1. Using right-angle
trigonometry, we know the side opposite β is x, and the hypotenuse is 1. We want cos β,



so we need the side adjacent to β; from the Pythagorean Theorem, that is
√

1− x2, so
cos β =

√
1−x2/1 =

√
1− x2. Hence

I =
1

2

(
sin−1 x+ x

√
1− x2

)
+ C .

(Notice that the 2’s cancel in the second term.)

(c)
∫

3

x+ x3
dx

Use partial fraction decomposition:
3

x+ x3
=

3

x (1 + x2)
=
A

x
+
Bx+ C

x2 + 1

3 = A
(
x2 + 1

)
+ (Bx+ C)x

When x = 0, this equation simpli�es to 3 = A. To �nd B and C , we substitute x = ±1:
x = 1 : 3 = 3× 2 +B + C

x = −1 : 3 = 3× 2 +B − C
We can simply subtract these equations to see that

0 = 0 + 2C ,

so C = 0. Back-substitute to �nd that
3 = 3× 2 +B + 0 =⇒ B = −3 .

Hence
I =

∫
3

x
− 3x

x2 + 1
dx = 3 ln |x| − 3

∫
x

x2 + 1
dx .

To simplify this last integral, let u = x2 + 1, so that dx = du/(2x), and

I = 3 ln |x| − 3

∫
x

u

du

2x
= 3 ln |x| − 3

2

∫
du

u
= 3 ln |x| − 3

2
ln
(
x2 + 1

)
+ C .

(d)
∫
e2x sinx dx

This looks like a product, so we will integrate by parts. Let
u = e2x v′ = sinx

u′ = 2e2x v = − cosx .

Then
I = uv −

∫
u′v dx = −e2x cosx+ 2

∫
e2x cosx dx .

It looks as if we need to integrate by parts again. Let
u = e2x v′ = cosx

u′ = 2e2x v = sinx

Then

I = −e2x cosx+ 2

(
uv −

∫
u′v dx

)
= −e2x cosx+ 2

(
e2x sinx− 2

∫
e2x sinx dx

)
.



We seem to be going in circles, but that’s not really a problem, because we we can sub-
stitute I and solve a linear equation:

I = −e2x cosx+ 2e2x sinx− 4I

5I = −e2x cosx+ 2e2x sinx

I =
1

5

(
−e2x cosx+ 2e2x sinx

)
+ C .

(e)
∫

tan3 x secx dx

Both degrees are odd, so isolate secx tanx and use the Pythagorean identities to rewrite
everything else as a power of secant:

I =

∫
tan2 x︸ ︷︷ ︸

“everything else”

secx tanx dx =

∫ (
sec2 x− 1

)
secx tanx dx .

Let u = secx, so that du/dx = secx tanx, as we have

I =

∫ (
u2 − 1

)
((((((secx tanx

du

((((((secx tanx
=
u3

3
− u =

sec3 x

3
− secx+ C .

(f)
∫

cos4 x sin2 x dx

Both powers are even, so rewrite using half-angle formulas:

I =

∫ (
cos2 x

)2
sin2 x dx

=

∫ (
1 + cos 2x

2

)2(
1− cos 2x

2

)
dx

=
1

8

∫ (
1 + 2 cos 2x+ cos2 2x

)
(1− cos 2x) dx

=
1

8

∫
1 + cos 2x− cos2 2x− cos3 2x dx .

I will split this into three integrals:

I1 =

∫
1 + cos 2x dx I2 =

∫
cos2 2x dx I3 =

∫
cos3 2x dx .

The �rst integral is easy:

I1 = x+
sin 2x

2
.

The second integral requires another half-angle formula:

I2 =

∫
1 + cos 4x

2
dx =

1

2

(
x+

sin 4x

4

)
.



The third integral requires us to isolate cos 2x and use a Pythagorean identity to rewrite
everything else as a power of secant:

I3 =

∫
cos2 2x︸ ︷︷ ︸

everythign else

cos 2x dx =

∫ (
1− sin2 2x

)
cos 2x dx .

Let u = sin 2x, so that du/dx = 2 cos 2x, and we have

I3 =

∫ (
1− u2

)
cos 2x

du

2 cos 2x
=

1

2

∫
1− u2 du =

1

2

(
u− u3

3

)
=

1

2

(
sin 2x− sin3 2x

3

)
.

Put it all together, and

I =
1

8


(
x+

sin 2x

2

)
︸ ︷︷ ︸

I1

− 1

2

(
x+

sin 4x

4

)
︸ ︷︷ ︸

I2

− 1

2

(
sin 2x− sin3 2x

3

)
︸ ︷︷ ︸

I3

+ C .

(g)
∫ π/4

π/4

tan55 x dx

Don’t try doing this by hand, but rather think of the geometry. The value is 0.

(h)
∫ π

0

tanx dx

Careful! This is an improper integral! There is an asymptote at x = π/2. Separate it as

I = lim
b→π

2
−

∫ b

0

tanx dx+ lim
a→π

2
+

∫ π

a

tanx dx .

To integrate tanx we use a trigonometric identity:∫
tanx dx =

∫
sinx

cosx
dx =

∫
sinx

u

du

− sinx
= −

∫
du

u
= − ln |tanx| .

Hence

I = lim
b→π

2
−
− ln |cosx||b0 + lim

a→π
2
+
− ln |cosx||πa

= lim
b→π

2
−

(− ln |cos b|+ ln |cos 0|) + lim
a→π

2
+

(− ln |cosπ|+ ln |cos a|) .

However, as b → (π/2)−, cos b → 0, and then ln |cos b| diverges, so at least one limit
diverges, so the integral diverges.
This is a really evil integral, too, since if you don’t think about the asymptote it converges.

(i)
∫ π

0

tan2 x dx

Same consideration (asymptote in the interval). Separate it as

I = lim
b→π

2
−

∫ b

0

tan2 x dx+ lim
a→π

2
+

∫ π

a

tan2 x dx .



To integrate tan2 x we use a Pythagorean identity:∫
tan2 x dx =

∫
sec2 x− 1 dx = tanx− x .

Hence

I = lim
b→π

2
−

(tanx− x)|b0 + lim
a→π

2
+

(tanx− x)|πa

= lim
b→π

2
−

[(tan b− b)− (tan 0− 0)] + lim
a→π

2
+

[(tanπ − π)− (tan a− a)] .

However, as b → (π/2)−, tan b → ∞, so at least one limit diverges, so the integral
diverges.
This is a really evil integral, too, since if you don’t think about the asymptote it converges.

(j)
∫ ∞

0

x

x2 + 1
dx

Since the integral is improper, we rewrite it:

I = lim
b→∞

∫ b

0

x

x2 + 1
dx .

To integrate, let u = x2 + 1 so that du/dx = 2x, and then

I = lim
b→∞

∫ b

x=0

x

u

du

2x

=
1

2
lim
b→∞

∫ b

x=0

du

u

=
1

2
lim
b→∞

ln |u||bx=0

=
1

2
lim
b→∞

ln
∣∣x2 + 1

∣∣∣∣b
x=0

=
1

2
lim
b→∞

(
ln
∣∣b2 + 1

∣∣− ln 1
)
.

Hwoever, as b→∞, b2 + 1→∞, and then ln (b2 + 1)→∞, so the limit diverges, and
hence the integral diverges.



2.5. Decide the following questions.
(a) Does the area under the graph of f (x) = xe−x

2 converge on the interval [0,∞)? If so,
what does it converge to? If not, why not?
We want to know if

∫∞
0
xe−x

2
dx converges. Rewrite it as

I = lim
b→∞

∫ b

0

xe−x
2

dx .

Let u = −x2 so that du/dx = −2x and then

I = lim
b→∞

∫ b

x=0

xeu
du

−2x

= −1

2
lim
b→∞

∫ b

x=0

eu du

= −1

2
lim
b→∞

eu|bx=0

= −1

2
lim
b→∞

e−x
2
∣∣∣b
0

= −1

2
lim
b→∞

(
e−b

2 − e0
)

= −1

2
(0− 1)

=
1

2
.

The interval converges to 1/2.
(b) Does the area under the graph of f (x) =

(
e1/x

2)
/x3 converge on the interval [−1, 1]?

If so, what does it converge to? If not, why not?
We want to know if

∫ 1

−1

(
e1/x

2)
/x3 dx converges. We have to be careful here, because

there is an asymptote at x = 0. Split the integral into two:

I = lim
b→0−

∫ b

−1

e1/x
2

x3
dx+ lim

a→0+

∫ 1

a

e1/x
2

x3
dx .

To handle the integrals, let u = 1/x2, so that du/dx = −2/x3, and then∫
e1/x

2

x3
dx =

∫
eu

x3
× x3 du

−2
= −1

2

∫
eu du = −1

2
eu = −1

2
e
1/x2 .

Hence

I = lim
b→0−

−1

2
e
1/x2
∣∣∣∣b
−1

+ lim
a→0+

−1

2
e
1/x2
∣∣∣∣1
a

= lim
b→0−

(
−1

2
e
1/b2 +

1

2
e
1/(−1)2

)
+ lim

a→0+

(
−1

2
e
1/12 +

1

2
e
1/a2
)
.

However, as b → 0−, then 1/b2 → ∞, so that e1/b2 → ∞. At least one of the limits
diverges, so the integral diverges.



(c) Why do we say that
∫ 1

−1
1/x dx diverges, when its graph is plainly symmetric and suggests

an area of 0?
The asymptote at x = 0 means that we have to split it into two integrals:∫ 0

−1

1

x
dx+

∫ 1

0

1

x
dx .

At least one of these “sub-integrals” diverges (proof omitted; you should be able to verify
it) so the original integral diverges. We may not combine divergent integrals to
obtain a convergent integral.

2.7. Compute the following volumes, if they converge. If they do not, indicate that.
(a) The volume of the solid whose base is the region between f (x) = 1/x2 and the x-axis

over [1,∞) and whose cross-sections perpendicular to the x-axis are squares.
This requires volume by slicing. The slice at point x has a cross-section of a square of
side length 1/x2, so the area of the cross-section is (1/x2)2. Hence

V =

∫ ∞
1

(
1

x2

)2

dx = lim
b→∞

∫ b

1

1

x4
dx = lim

b→∞

(
− 1

3x3

)∣∣∣∣b
1

= lim
b→∞

(
− 1

3b3
+

1

3× 13

)
→ 0+

1

3
=

1

3
.

(b) The volume of the solid formed by rotating the region between f (x) = 1/x2 and the
x-axis over [1,∞) about the x-axis.
This requires volume by discs. The radius is f (x) = 1/x2. Hence

V = π

∫ ∞
1

(
1

x2

)2

dx = π

∫ ∞
1

1

x4
dx = π × 1

3
=
π

3
.

(I used the fact that we had already computed the integral in part (a).)
(c) The volume of the solid formed by rotating the region between f (x) = 1/x2 and the

x-axis over [1,∞) about the y-axis.
This requires either volume by shells, or else rewriting the equation in terms of y. If we
use shells, the height of each shell is f (x) = 1/x2. Hence

V = 2π

∫ ∞
1

x · 1

x2
dx = 2π

∫ ∞
1

1

x
dx .

You know from class that this integral diverges, so the volume likewise diverges.



2.8. Let G (x) =

∫ x

0

sin πt dt.

(a) Evaluate G (0). Explain how you determined your answer.
G (0) =

∫ 0

0
sin πt dt = 0 because the interval is just a point.

(b) Use the Midpoint Rule to approximate G (4), using 8 subintervals. Round your answer
to the nearest thousandth.
We have ∆x = (4−0)/8 = 1/2. The subintervals’ endpoints are x0 = 0, x1 = 1/2, x2 = 1,
x3 = 3/2, x4 = 2, x5 = 5/2, x6 = 3, x7 = 7/2, x8 = 4. The Midpoint Rule tells us

G (4) ≈
8∑
i=1

f

(
xi−1 + xi

2

)
∆x

=

[
f

(
x0 + x1

2

)
+ f

(
x1 + x2

2

)
+ f

(
x2 + x3

2

)
+ f

(
x3 + x4

2

)
+f

(
x4 + x5

2

)
+ f

(
x5 + x6

2

)
+ f

(
x6 + x7

2

)
+ f

(
x7 + x8

2

)]
× 1

2︸︷︷︸
∆x

=

[
f

(
1

4

)
+ f

(
3

4

)
+ f

(
5

4

)
+ f

(
7

4

)
+f

(
9

4

)
+ f

(
11

4

)
+ f

(
13

4

)
+ f

(
15

4

)]
× 1

2

=

(
sin

π

4
+ sin

3π

4
+ sin

5π

4
+ sin

7π

4
+ sin

9π

4
+ sin

11π

4
+ sin

13π

4
+ sin

15π

4

)
× 1

2

=

(√
2

2
+

√
2

2
−
√

2

2
−
√

2

2
+

√
2

2
+

√
2

2
−
√

2

2
−
√

2

2

)
× 1

2

= 0 .

(c) Use Simpson’s Rule to approximate G (4), using 8 subintervals. Round your answer to
the nearest thousandth.
We have ∆x = (4−0)/8 = 1/2. The subintervals’ endpoints are x0 = 0, x1 = 1/2, x2 = 1,
x3 = 3/2, x4 = 2, x5 = 5/2, x6 = 3, x7 = 7/2, x8 = 4. Simpson’s Rule tells us

G (4) ≈ [f (x0) + 4f (x1) + 2f (x2) + 4f (x3) + 2f (x4)

+4f (x5) + 2f (x6) + 4f (x7) + f (x8)]× ∆x

3

=

[
sin 0 + 4 sin

π

2
+ 2 sinπ + 4 sin

3π

2
+ 2 sin 2π

+4 sin
5π

2
+ 2 sin 3π + 4 sin

7π

2
+ sin 4π

]
×

1/2

3

= (0 + 4 + 0− 4 + 0 + 4 + 0− 4 + 0)× 1

6
= 0 .



(d) Using the formulas

ES ≤
k (b− a)

180
(∆x)4 ,

compute the upper bound for the error of Simpson’s approximation. Comment on how
this estimate compares to the absolute error.
First we need f (4) (x), the fourth derivative of f . The derivatives are

f ′ (x) = π cosπt

f ′′ (x) = −π2 sinπt

f ′′′ (x) = −π3 cosπt

f (4) (x) = π4 sin πt .

The maximum value on [0, 4] of its absolute value is k = π4. Hence

ES ≤
π4 · (4− 0)

180

(
4− 0

8

)4

=
4π4

180
× 256

4096
= π4/720 ≈ 0.1353 .

To determine the absolute error, we need to know the actual value of G (4), which in
this case we can actually compute:

G (4) =

∫ 4

0

sin πt dt = −cos πt

π

∣∣∣∣4
0

= − 1

π
(cos 4π − cos 0) = − 1

π
(1− 1) = 0 .

Our approximation was also 0 (in both cases, in fact). Hence the absolute error is 0,
which is in fact smaller than the estimate error 0.1353.

(e) Do you expect the error for the Midpoint Rule to be more, or less, thanES? Why or why
not?
Ordinarily we’d expect the error for the Midpoint Rule to be less, but in this case the
error is actually the same, because both approximations lucked out to give us the exact
value.


