
DEFINITIONS/BIG-TIME FACTS TO KNOW FOR TEST 3

DEFINITIONS

All previous definitions, especially:
Applications of integrals: If the value V of a real-world phenomenon can be approximated by
dividing an interval [a, b ] into n subintervals and adding the values of another function f on
those subintervals, so that V ≈

∑n
i=1 f

�

x∗i
�

∆x, then we can eliminate error by taking the limit

as n→∞, so that the value of V is
∫ b

a
f (x) dx.

You should be able to use this principle to explain any application. For instance, were I to ask,
“Why is A=

∫ b
a

f (x) dx the formula for the area under a function f ?” the best answer would be,
We can approximate the area under f on [a, b ] by dividing [a, b ] into n subin-
tervals and adding the areas of rectangles whose width is ∆x = (b−a)/n and whose
height is f

�

x∗i
�

, where x∗i is a sample point on each subinterval. That is,

A≈
n
∑

i=1

`i wi =
n
∑

i=1

f (x∗i )∆x .

To eliminate the error, let the number of rectangles approach∞, so that

A= lim
n→∞

n
∑

i=1

f (x∗i )∆x =
∫ b

a
f (x) d x .

You wouldn’t need such a detailed answer for full credit; the main point is that I see:
• division of an interval;
• a reasonable explanation of the function used to approximate the quantity; and
• a reference to the limit giving us the integral.

Naturally, the more detailed and correct your answer is, the more likely you receive full credit.
Be ready to apply this principle to any of the following applications:

area between two curves average value of a function net change of a function
volume by slicing volume by discs or washers volume by shells

But also:
(definite) integral of f (x) over [a, b ]
(geometric) the net area between the curve of f (x) and the x-axis, starting at x = a and ending

at x = b

(algebraic) lim
n→∞

n
∑

i=1

f (x∗i )∆x, where ∆x = b−a/n and x∗i is any point in the i th subinterval of

width∆x of [a, b ], as long as the limit exists

antiderivative of f (x): any function F such that F ′ (x) = f (x)
(indefinite) integral of f (x): an antiderivative of f
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BIG-TIME RESULTS

You need not know the proofs. I include them only for the students who find it interesting.

Theorem (Pythagorean identities for trigonometric functions). For any angle θ,

sin2θ+ cos2θ= 1

tan2θ+ 1= sec2θ

tan2θ= sec2θ− 1 .

Proof. The definitions of sinθ and cosθ from the right triangle are that sinθ= opp/hyp and cosθ=
adj/hyp (SOHCAHTOA). From this we have

sin2θ+ cos2θ=
�

opp
hyp

�2

+
�

adj
hyp

�2

=
opp2+ adj2

hyp2 =
Pyth

hyp2

hyp2 = 1 .

Having established that, we can divide both sides by cos2θ to obtain

sin2θ

cos2θ
+

cos2θ

cos2θ
=

1
cos2θ

=⇒
trig. def.

tan2θ+ 1= sec2θ .

We obtain the third identity by simply rewriting the second. �

Theorem (The half-angle formulas). For any angle θ,

sin2θ=
1− cos2θ

2
and cos2θ=

1+ cos2θ
2

.

Proof. The double-angle formula for cosine tells us that

(0.1) cos2θ= cos2θ− sin2θ .

The Pythagorean identity tells us that

(0.2) sin2θ+ cos2θ= 1 =⇒ sin2θ= 1− cos2θ .

Substitution equation (0.2) into equation (0.1) and we have

cos2θ= cos2θ−
�

1− cos2θ
�

=⇒ cos2θ= 2cos2θ+ 1 .

Isolate cos2θ and you have the second half-angle formula.
If we solve (0.2) for cos2θ, a similar substitution gives the first half-angle formula. �

Theorem (The Chain Rule for Integrals; or, u-substitution). If f is a function of a variable u,
which in turn is a function of x, and F is an antiderivative of f , then

F (u) =
∫

f (u) u ′ dx =
∫

f (u) du.

Proof omitted, but available on request.
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Theorem (Integration by parts).
∫

uv ′ d x = uv −
∫

u ′v d x.

Proof. The product rule for derivatives states that

d
d x
(uv) = u ′v + uv ′ .

Integrate both sides,
∫
� d

d x
(uv)

�

d x =
∫

u ′v + uv ′ d x

and by properties of integrals we have

uv =
∫

u ′v d x +
∫

uv ′ d x .

Rewrite as

uv −
∫

u ′v d x =
∫

uv ′ d x

and we are done. �
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INTEGRATION TABLE

You must know them, as I will not provide these on the test. Don’t leave off “+C ” as I did.

∫

k d x = k x (k is a constant)

∫

xn d x =
xn+1

n+ 1
(n 6= 1)

∫

1
x

d x = ln |x|

∫

e x d x = e x

∫

ax d x =
ax

lna
(a > 0 but a 6= 1)

∫

sin x d x =−cos x
∫

cos x d x = sin x

∫

sec2 x d x = tan x
∫

sec x tan x d x = sec x

∫

csc2 x d x =−cot x
∫

csc x cot x d x =−csc x

∫

1
1+ x2

d x = arctan x

∫

1
p

1− x2
d x = arcsin x

∫

1

x
p

x2− 1
= arcsec x

Integration Heuristic.

Table Is the integrand in the table?

Geometry Does the integral represent
an easily-found geometric
value? Can I take advantage
of symmetry?

Algebra Can I rewrite the integral
by expanding or simplify-
ing?

Substitution Does the integrand have
one function “inside” an-
other? Do I see the inner
function’s derivative on the
“outside”?

Parts Does the integral look like
a product? If so, and its two
“parts” are uv ′, does u “re-
duce” when differentiating,
and is v ′ “easier” to inte-
grate? (The second question
is a guideline, not a hard-
and-fast rule!)

Trigonometry Do I see sinm α cosn α or
tanm α secn α?

Trig. subst. Do I see a2+ x2, a2− x2, orp
x2− a2?
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EXAMPLE PROBLEMS

This list is by no means exhaustive.
1. Simplify the following integrals.

(a)
∫

sin2 2x d x (b)
∫

x sin3x d x (c)
∫

ln (4x) d x

(d)
∫

3x2 ln (2x) d x (e)
∫

cos (2x) ln (sin2x) d x (f)
∫

e−2x cos x d x

(g)
∫

sin4 x cos3 x d x (h)
∫

sin4 x cos2 2x d x (i)
∫

sec4 x d x

(j)
∫π/4

0
tan5 x sec x d x (k)

∫π/4
−π/4 tan3 x d x (l)

∫ 4
−4

p
16− x2 d x

(m)
∫ 3

1

p
16− x2 d x (n)

∫

x2

p
x2− 16

d x (o)
∫

x3
p

x2+ 9 d x

2. Set up integrals for the following problems, but do not simplify them.
(a) Find the average value of f (x) = 1/ (3x) on the interval [1,3]. Diagram f and its average

value in appropriate fashion.
(b) If the marginal cost of producing n thousand widgets is M C (n) = (n− 3)2−1 thousands

of dollars, determine the net change in cost to increase production from 1 thousand to
3 thousand widgets.

(c) Find the total area of the region between the curves f (x) = 4−x and g (x) =
p

1− x2 over
the interval [0,1]. To evaluate the integral it may help to use geometry. Draw a diagram
of the region.

(d) Use the method of slicing to find the volume of the solid whose base is the region between
y = x2, the x-axis, and the line x = 1 and whose cross-sections perpendicular to the x-axis
are squares.

(e) Use the method of disks and washers to find the volume of the solid formed by rotating
the region defined in part (c) about the x-axis.

(f) Use the method of shells to find the volume of the solid formed by rotating the region
between y = sin (πx), the x-axis, x = 0, and x = 1 about the y-axis.

(g) Use the method of shells to find the volume of the solid formed by rotating the region
defined in part (c) about the y-axis.
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SOLUTIONS TO EXAMPLE PROBLEMS

1.
(a)

∫

sin2 x d x
This integral doesn’t appear on the table. It looks a little like both

∫

sin u d u and
∫

u2 d u,
neither of which helps. You need instead to make use of the half-angle formula:

∫

sin2 x d x =
∫

1− cos2x
2

d x =
1
2

∫

1− cos2x d x .

Integrating 1 is trivial, but integrating cos2x requires substitution. Let u = 2x and we
have

d u
d x
= 2 =⇒ d u

2
= d x .

Hence
1
2

∫

1− cos2x d x =
1
2

∫

(1− cos u) · d u
2
=
�

1
2
· 1

2

�
∫

1− cos u d u

=
1
4
(u − sin u)+C =

1
4
(2x − sin2x)+C .

(b)
∫

x sin3x d x
This integral looks like a product of x and sin3x, which is a clue that you should pursue
integration by parts. (Besides, nothing else works.) The derivative of x is “simpler” than
x, and the integral of sin3x is “easy” to compute, so we set

u = x v ′ = sin3x

u ′ = 1 v =−1
3

cos3x

(You can compute v using a u-substitution with u = 3x.) The integration by parts for-
mula tells us that

∫

uv ′ d x = uv −
∫

u ′v d x =−1
3

x cos3x −
∫

1 ·
�

−1
3

cos3x
�

d x .

The second integral can be solved with a simple u-substitution (u = 3x again) so the
original integral simplifies to

I =−1
3

x cos3x +
1
3

∫

cos3x d x =
1
3

�

−x cos3x +
1
3

sin3x
�

+C .

(c)
∫

ln (4x) d x
Although this doesn’t look like a product, the only way to attack this is by parts. (This is
common with expressions involving ln, though by no means universal.) The only choice
to make is

u = ln (4x) v ′ = 1

u ′ =
1

4x
·4
︸︷︷︸

chain

v = x
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(because ln (4x) = ln (4x)× 1, so if you choose u = ln (4x) you have no choice for v ′ but
1). Notice u ′ simplifies to 1/x. The integration by parts formula tells us that

∫

uv ′ d x = uv −
∫

u ′v d x = x ln (4x)−
∫

1
x
· x d x = x ln (4x)−

∫

d x = x ln (4x)− x +C .

(d)
∫

3x2 ln (2x) d x
This problems also requires us to integrate by parts. Choose

u = ln (2x) v ′ = 3x2

u ′ =
1

��2x
· ��2 v = ��3×

x3

��3

(unless you feel like integrating ln (2x), which can be done similarly to part (c)). The
integration by parts formula tells us that

∫

uv ′ d x = uv−
∫

u ′v d x = x3 ln (2x)−
∫

1
x
·x3 d x = x3 ln (2x)−

∫

x2 d x = x3 ln (2x)− x3

3
+C .

(e)
∫

cos (2x) ln (sin2x) d x
Although this looks like a product, and you can solve it using integration by parts, you
can start with u-substitution. Let

u = sin2x =⇒ d u
d x
= 2cos2x =⇒ d u

2cos2x
= d x .

We can rewrite the integral as

(0.3)
∫

���
�cos (2x) ln u

d u
2����cos2x

=
1
2

∫

ln u d u .

At this point you may recognize that our integral looks a lot like the one in (b), where we
have to use integration by parts. Ordinarily we’d use u and v, but we’ve already used u
once, so we’ll use w and v instead. (Get it? w is “double u.” Hyuck hyuck.) We have

w = ln u v ′ = 1

w ′ =
1
u

v = u

The integration by parts formula tells us that
∫

wv ′ d u = wv −
∫

w ′v d u = u ln u −
∫

1
u
· u d u = u ln u −

∫

d u = u ln u − u +C .

Once we substitute back in for u, we get

sin2x ln sin2x − sin2x +C .

However, we had a 1/2 way up in equation (0.3) that I omitted while working on
∫

ln u d u;
we have to add that back in. So the correct answer is

1
2

sin2x ln sin2x − sin2x +C .
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On the other hand, suppose you decided to solve it by parts from the start. The best idea
is to use

u = ln (sin2x) v ′ = cos (2x)

u ′ =
1

sin2x
· 2cos2x
︸ ︷︷ ︸

chain

v =
1
2

sin2x

The integration by parts formula tells us that
∫

uv ′ d x = uv −
∫

u ′v d x =
1
2

sin2x ln (sin2x)−
∫

2cos2x
��

��sin2x
· 1

2
���

�sin2x d x

=
1
2

sin2x ln (sin2x)−
∫

cos2x d x

=
1
2

sin2x ln (sin2x)− 1
2

sin2x +C .

We get the same answer, and this seems a little quicker, actually!
(f)

∫

e−2x cos x d x
This looks like a product, so we try integration by parts. Let

u = e−2x v ′ = cos x

u ′ =−2e−2x v = sin x

(You could swap the choices of u and v ′ and still get the right answer, but these are my
solutions, so I’ll do them how I want.) The integration by parts formula tells us that

(0.4)

I =
∫

uv ′ d x = uv−
∫

u ′v d x = e−2x sin x−
∫

�

−2e−2x� sin x d x = e−2x sin x+2
∫

e−2x sin x d x .

We have a new integral that looks suspiciously similar to the one we started with, but it’s
different enough that we don’t panic yet. Let

u = e−2x v ′ = sin x

u ′ =−2e−2x v =−cos x

(You may not at this point swap the choices of u and v ′; that would be catastrophic.
However, if you swapped the choices in the first step, then you should imitate your choice
in the second step. If you don’t understand what I’m saying in this aside, then ignore
it: what matters is that you understand what’s outside this parenthetical remark.) The
integration by parts formula tells us that

(0.5)
∫

uv ′ d x = uv−
∫

u ′v d x = e−2x (−cos x)−
∫

�

−2e−2x� (−cos x) d x =−e−2x cos x−2
∫

e−2x cos x d x .

We now have an integral that looks exactly like the one we started with.

PANIC!
That’s right; go ahead and get it out of your system. Just don’t take too long, because
you only have 50 minutes for the test. How, then, should you handle this problem? Put
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together the original integral I and equations (0.4) and (0.5) to see that

I = e−2x sin x + 2
�

−e−2x cos x − 2I
�

which we can rewrite as

I = e−2x sin x − 2e−2x cos x − 4I .

We can actually solve for I by adding 4I to both sides:

5I = e−2x sin x − 2e−2x cos x =⇒ I =
1
5

�

e−2x sin x − 2e−2x cos x
�

.

(g)
∫

sin4 x cos3 x d x
It looks like a product, but it’s a product of trigonometric functions, so we have to apply
properties of trig functions. In this case, the power on cosine is odd, so rewrite all the
cosines as sines except one:

I =
∫

sin4 x · cos2 x · cos x d x =
︸︷︷︸

Pyth.

∫

sin4 x
�

1− sin2 x
�

cos x d x .

Now let u = sin x; we have d u/d x = cos x, so d x = d u/cos x. Hence

I =
∫

u4 �1− u2�
���cos x · d u

���cos x
=
∫

u4− u6 d u =
sin5 x

5
− sin7 x

7
+C .

(h)
∫

sin4 x cos2 2x d x
Again we need to apply properties of trig functions. This time, both powers are even, so
we use half-angle formulas:

I =
∫

�

sin2 x
�2 cos2 2x d x =

∫
�

1− cos2x
2

�2�1+ cos4x
2

�

d x .

We have to expand the product:

I =
1
8

∫

�

1− 2cos2x + cos2 2x
�

(1+ cos4x) d x

=
1
8

∫

1+ cos4x − 2cos2x − 2cos2x cos4x + cos2 2x + cos2 2x cos4x .

The first three terms are relatively easy to integrate; u-substitution will do. The fifth term
is a little harder, but like (a) a double-angle formula will do. So I will rewrite and separate
I into two integrals,

I =
1
8

∫

�

1+ cos4x − 2cos2x + cos2 2x
�

︸ ︷︷ ︸

+
I1

�

−2cos2x cos4x + cos2 2x cos4x
�

︸ ︷︷ ︸

I2

.
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Let’s go ahead and dispose of I1:

I1 =
∫

1+ cos4x − 2cos2x +
1+ cos4x

2
d x

= x +
1
4

sin4x − sin2x +
1
2

�

x +
1
4

sin4x
�

=
3
2

x +
3
8

sin4x − sin2x .

That leaves I2, which mix cos2x with cos4x. Use a double-angle formula to rewrite

cos4x =
�

1− 2sin2 2x
�

=
�

2cos2 2x − 1
�

.

(Watch as we cleverly use both versions.) We now have, and split into two new integrals,

I2 =
∫

�

−2cos2x
�

1− 2sin2 2x
��

︸ ︷︷ ︸

I3

+
�

cos2 2x
�

2cos2 2x − 1
��

︸ ︷︷ ︸

I4

d x .

For I3, a simple u-substitution will do. Let u = sin2x, then d u/d x = 2cos2x, so d x =
d u/2cos2x and

I3 =
∫

−2����cos2x
�

1− 2u2� · d u
2����cos2x

=−
∫

1− 2u2 d u =− sin2x +
2sin3 2x

3
.

For I4, we will have to use half-angle formulas again:

I4 =
∫

2cos4 2x − cos2 2x d x

=
∫

2
�

1+ cos4x
2

�2

− 1+ cos4x
2

d x

=
∫

1
2

�

1+ 2cos4x + cos2 4x
�

− 1+ cos4x
2

d x .

This simplifies to

I4 =
∫

cos4x
2
+

cos2 4x
2

d x =
∫

cos4x
2
+

1+ cos8x
4

d x .

(Notice we needed yet another half-angle formula.) So

I4 =
sin4x

8
+

1
4

�

x +
1
8

sin8x
�

=
1
8

sin4x +
1
4

�

x +
sin8x

8

�

.

Combining everything, including — let us not forget! — the 1/8 that appeared in I , which
we did not copy down into I2, etc., we have

I =
1
8





















3
2

x +
3
8

sin4x − sin2x
︸ ︷︷ ︸

I1

+
�

− sin2x +
2sin3 2x

3

�

︸ ︷︷ ︸

I3

+
1
8

sin4x +
1
4

�

x +
sin8x

8

�

︸ ︷︷ ︸

I4
︸ ︷︷ ︸

I2





















.
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That looks like a lot, but. . . well, you’re right. It is a lot. I wouldn’t ask something quite
this complicated on a test. In any case, I’ve checked it against a computer algebra system,
though, and it works out.

(i)
∫

sec4 x d x
Since the power of secant is even, rewrite all but two secants as tangents using a Pythagorean
identity:

I =
∫

sec2 x · sec2 d x d x =
∫

�

tan2 x + 1
�

sec2 x d x .

Let u = tan x; then d u/d x = sec2 x, so d x = d u/sec2 x and

I =
∫

�

u2+ 1
�

���sec2 x · d u
���sec2 x

=
∫

u2+ 1 d u =
tan3 x

3
+ tan x +C .

(j)
∫π/4

0
tan5 x sec x d x

Since the powers are both odd, isolate one secant and one tangent, and rewrite everything
else as secants:

I =
∫ π/4

0
tan4 x · sec x tan x d x =

∫ π/4

0

�

sec2 x − 1
�2 sec x tan x d x .

Let u = sec x; then d u/d x = sec x tan x, so d x = d u/(sec x tan x) and

I =
∫

p
2

1

�

u2− 1
�2
((((

((sec x tan x · d u

((((
((sec x tan x

=
∫

p
2

1
u4− 2u2+ 1 d u

=
�

u5

5
− 2u3

3
+ u

�
�

�

�

�

p
2

1

=
�p

2
5

5
− 2
p

2
3

3
+
p

2

�

−
�

1
5
− 2

3
+ 1

�

=
7
p

2
15
− 8

15
.

(k)
∫π/4
−π/4 tan3 x d x

If you merely consider the geometry, you see that the curve is symmetric, with half below
the axis and half above. The net area is 0, so the integral is 0.
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(l)
∫ 4
−4

p
16− x2 d x

Again, consider the geometry:
p

16− x2 is the equation of a semicircle of radius 4 centered
at the origin (from the equation of a circle x2+ y2 = 42). The area is

πr 2

2
=
π · 42

2
= 8π.

The integral is the area, so I = 8π.
(m)

∫ 3
1

p
16− x2 d x

Although this, too, is area under a semicircle, it isn’t the entire area, so we can’t apply
the formula. In this case we have to use trigonometric substitution. We’re looking at the
form a2− u2, in which case we should substitute

x = a sinθ= 4sinθ =⇒ d x
dθ
= 4cosθ =⇒ d x = 4cosθ dθ ,

giving us

I =
∫ 3

x=1

p

16− 16sin2θ · 4cosθdθ .

The point of this is to rewrite so that we can use the Pythagorean identity:

I =
∫ 3

x=1

p
16
p

1− sin2θ · 4cosθ dθ= 16
∫ 3

x=1

p
cos2θ · cosθ dθ= 16

∫ 3

x=1
cos2θ dθ .

At this point we need to apply a half-angle formula:

I = 16
∫ 3

x=1

1+ cos2θ
2

dθ= 8
�

θ+
sin2θ

2

�
�

�

�

�

3

x=1
.

We have to rewrite in terms of x before substituting, but the second fraction has the form
sin2θ, so we also need to exploit a double-angle formula to end up in terms of just θ,
rather than 2θ:

I = 8
�

θ+
2sinθ cosθ

2

�
�

�

�

�

3

x=1
= 8 (θ+ sinθ cosθ)|3x=1 .

Recall that x = 4sinθ, so sinθ = x/4 and θ = arcsin (x/4). What about cosθ? We just
pointed out that sinθ = x/4, so we investigate a right triangle where the leg opposite θ is
x and the hypotenuse is 4:
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θ

x

4

In this case, cosθ= adj/hyp=
p

16−x2/4. So the integral is

I = 8
�

arcsin
� x

4

�

+
x
4
·
p

16− x2

4

�

�

�

�

�

�

3

1

= 8

�

�

arcsin
�

3
4

�

+
3
p

7
16

�

−
�

arcsin
�

1
4

�

+
p

15
16

��

.

(n)
∫

x2

p
x2− 16

d x

Same issue, but this time we see
p

x2− a2 so we use

x = a secθ =⇒ x = 4secθ =⇒ d x
dθ
= 4secθ tanθ ,

so

I =
∫

16sec2θ
p

16sec2θ− 16
· 4secθ tanθ dθ

=
∫

16sec2θ

�
��
p

16
p

sec2θ− 1
· ��4secθ tanθ dθ

=
∫

16sec2θ

��
���

p
tan2θ

· secθ���tanθ dθ

= 16
∫

sec3θ dθ .

The power of the secant is odd, and there are no tangents, so the strategy is in circumstance
is to

PRAY.
Once we have that out of the way, we use Reduction Formula #55 in the text’s integration
table, which states that

∫

secn (ax) =
1

a (n− 1)
secn−2 (ax) tan (ax)+

n− 2
n− 1

∫

secn−2 (ax) d x .

In our case, which is sec3θ, we have n = 3 and a = 1, so

I = 16
�

1
1× (3− 1)

sec3−2 (1θ) tan (1θ)+
3− 2
3− 1

∫

sec3−2 (1θ) dθ
�

= 16
�

1
2

secθ tanθ+
1
2

∫

secθ dθ
�

.
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For
∫

sec x d x you need another entry of the integration table, which number I forget
offhand but it’s

∫

sec x = ln |sec x + tan x| ,

so that we have

I = 8 (secθ tanθ+ ln |secθ+ tanθ|)+C .

Now we have to return to the world of x’s. Recall that x = 4secθ, so secθ= x/4. For tanθ
we use the same triangle idea as in the previous program to determine that tanθ=

p
x2−16/4.

That gives us

I = 8

�

x
4
·
p

x2− 16
4

+ ln

�

�

�

�

�

x
4
+
p

x2− 16
4

�

�

�

�

�

�

+C =
x
p

x2− 16
2

+ 8 ln

�

�

�

�

�

x +
p

x2− 16
4

�

�

�

�

�

+C .

[Note: While this is a good example of the kind of problem I could ask, it is not a good
example of the difficulty I am aiming for on the test. This problem requires at least two
entries from an integration table. I will not require you to know or use any entries from
an integration table. I might ask you to prove a reduction formula, but it would be a
simple one that proceeds by integration by parts, like one I did in class.]

(o)
∫

x3
p

x2+ 9 d x
Same as before, but this time we see x2+ a2 so we use

x = a tanθ =⇒ x = 3tanθ =⇒ d x
dθ
= 3sec2θ ,

so

I =
∫

27tan3θ ·
p

9tan2θ+ 9 · 3sec2θ dθ

= 81
∫

tan3θ ·
p

9
p

tan2θ+ 1 · sec2θ dθ

= 243
∫

tan3θ ·
p

sec2θ · sec2θ dθ

= 243
∫

tan3θ sec3θ dθ .

We dealt with something like this way back in (j). Both powers are odd, so we reserve one
each of tanθ and secθ and convert the remaining tangents to secants:

I = 243
∫

tan2θ sec2θ · tanθ secθ dθ= 243
∫

�

sec2θ− 1
�

sec2θ · secθ tanθ dθ .

The whole point of this is to let u = secθ, so that d u/dθ= secθ tanθ, and

I = 243
∫

�

u2− 1
�

u2 ·((((((secθ tanθ · d u
((((

((secθ tanθ
= 243

∫

u4− u2 d u .

This is now easy:

I = 243
�

u5

5
− u3

3

�

+C = 243
�

sec5θ

5
− sec3θ

3

�

+C .



DEFINITIONS/BIG-TIME FACTS TO KNOW FOR TEST 3 15

Once again, we have to convert back to the world of x’s. Recall that x = 3tanθ, so
tanθ = x/3. Unfortunately, we don’t have any tangents in our answer; we have only
secants. As before, build a right triangle to determine that secθ=

p
x2+9/3. Now we have

I = 243









�p
x2+9
3

�5

5
−

�p
x2+9
3

�3

3









+C

= 243







(x2+9)5/2
243

5
−
(x2+9)3/2

27

3






+C

=

�

x2+ 9
�5/2

5
− 3

�

x2+ 9
�3/2+C .

Remark: Some systems will simplify this further (see below) but the solution above suf-
fices.

I =
�

x2+ 9
�3/2

��

x2+ 9
�

5
− 3

�

+C =
�

x2+ 9
�3/2 ·

�

x2− 6
�

5
+C .
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2.
(a) Average value is

y =
1

3− 1

∫ 3

1

1
3x

d x =
�

1
2
· 1

3

�
∫ 3

1

1
x

d x =
1
6
(ln |x|)|31

=
1
6
(ln3− ln1) =

1
6
(ln3− 0) =

1
6

ln3= ln
6p

3 .

The line is y = ln 6p3; the curve is y = 1/3x.

(b) Net change in cost is

C (b )−C (a) =
∫ b

a
C ′ (x) d x .

We can use marginal cost as an approximation to C ′ (x), so

C (3)−C (1) =
∫ 3

1
(n− 3)2− 1 d n =

∫ 3

1
n2− 6n+ 8 d n

=
�

n3

3
− 3n2+ 8n

�
�

�

�

�

3

1

=
��

27
3
− 27+ 24

�

−
�

1
3
− 3+ 8

��

=
2
3

.

The net change in cost would be roughly $667.

(c) First we make sure there are no intersections to worry about:

4− x =
p

1− x2

16− 8x + x2 = 1− x2

2x2− 8x + 15= 0 .

This is a quadratic equation. We can solve for x using the quadratic formula:

x =
8±
p

82− 4× 2× 15
2× 2

≈ 8±
p

64− 120
4

.
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A negative in the square root implies that the roots are complex (have imaginary parts) so
in fact there is no intersection. We proceed to computing the area:

A=
∫ 1

0
(4− x)−

p

1− x2 d x =
∫ 1

0
(4− x) d x −

∫ 1

0

p

1− x2 d x .

The first integral is straightforward:
∫ 1

0
4− x d x =

�

4x − x2

2

�
�

�

�

�

1

0

=
��

4 · 1− 12

2

�

−
�

4 · 0− 02

2

��

=
7
2

.

The second integral is algebraically impossible for you at the moment, but if you recognize
that
p

1− x2 comes from a circle of radius 1 at the original, and the integral asks for the
top-right quarter (not half!), then it’s easy:

∫ 1

0

p

1− x2 d x =
π · 12

4
=
π

4
.

So the area is
7
2
− π

4
.

(d) The base of the solid looks like this:

The cross sections perpendicular to the x-axis are squares with side length s = 1− x2. So
the volume is

V =
∫ 1

0
B (x) d x =

∫ 1

0
s 2 d x =

∫ 1

0

�

1− x2�2 d x =
∫ 1

0
1− 2x2+ x4 d x

=
�

x − 2x3

3
+

x5

5

�
�

�

�

�

1

0

=
��

1− 2 · 13

3
+

15

5

�

−
�

0− 2 · 03

3
+

05

5

��

=
8
15

.
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(e) If we rotate the area in part (c) about the x-axis, the resulting solid of revolution will have
volume

V =Vouter−Vinner =π
∫ 1

0
(4− x)2 d x −π

∫ 1

0

�p

1− x2
�2

d x .

(The first integral is the outer volume, the second integral is the inner volume of the hole.)
This is easy enough to integrate:

V =π
�∫ 1

0
16− 8x + x2 d x −

∫ 1

0
1− x2 d x

�

=π
�

�

16x − 4x2+
x3

3

�
�

�

�

�

1

0

−
�

x − x3

3

�
�

�

�

�

1

0

�

=π
���

16− 4+
1
3

�

− (0)
�

−
��

1− 1
3

�

− (0)
��

=π
�

12
1
3
− 2

3

�

=
35π

3
.

(f) The graph of sin (πx) intersects the axis at x = 0 and x = 1, so the shape is well-defined:

1

We are rotating about the y-axis, and we want to use shells, so we integrate with respect
to x. (Shells integrates perpendicular to the axis of rotation.) That gives us

V = 2π
∫ 1

0
x sin (πx) d x .

This looks like a product, so we use integration by parts:

u = x v ′ = sin (πx)

u ′ = 1 v =− 1
π
· cos (πx)
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Hence

V = 2π
�

−
x cos (πx)

π
−
∫

1×−
cos (πx)
π

d x
�
�

�

�

�

1

0

= 2��π
�

−
x cos (πx)
��π

+
1

��π

∫

cos (πx) d x
�
�

�

�

�

1

0

= 2
�

−x cos (πx)+
1
π

sin (πx)
�
�

�

�

�

1

0

= 2
�

�

−1 · cosπ+
1
π
���

�:0
sinπ

�

−
�

−0cos0+
1
π
�
��*

0
sin0

��

= 2 · (−1×−1)
= 2 .

(g) If we rotate the area in part (c) about the y-axis, the resulting solid of revolution will have
volume

V = 2π
∫ 1

0
x
�

(4− x)−
p

1− x2
�

d x .

This is easy enough to integrate, requiring only one substitution:

V = 2π
∫ 1

0
4x − x2− x

p

1− x2 d x

= 2π
�

2x2− x3

3
+

1
2
· 2
3
·
�p

1− x2
�3
�
�

�

�

�

1

0

= 2π
��

2− 1
3
+

1
3
· 0
�

−
�

0− 0+
1
3
· 1
��

= 2π
�

5
3
− 1

3

�

=
8π
3

.


