DEFINITIONS/BIG-TIME FACTS TO KNOW FOR TEST 1

CALCULUS II

DEFINITIONS

line tangent to $f(x)$ at $x=a$
(geometric) a line that intersects the curve defined by f at $x=a$ and goes in the same direction as the curve defined by f
(algebraic) the line $y=m(x-a)+f(a)$ where $m=f^{\prime}(a)$
derivative of $f(x)$ at $x=a$
(geometric) the slope of the line tangent to f at a
(algebraic) $f^{\prime}(x)=\frac{d y}{d x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta x}{\Delta y}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{h \rightarrow 0} \frac{f(x+b)-f(x)}{b}$
f is continuous on $[a, b]$
(geometric) f is unbroken: no gaps, jumps, or asymptotes
(precise) for any $c \in[a, b]$, we can find the limit of f at c by substitution; that is, $\lim _{x \rightarrow c} f(x)=f(c)$
f is differentiable on (a, b)
(geometric) f is smooth: no corners, cusps, or breaks
(precise) for any $c \in(a, b)$, we can find the derivative of f at c
(definite) integral of $f(x)$ over $[a, b]$
(geometric) the net area between the curve of $f(x)$ and the x-axis, starting at $x=a$ and ending at $x=b$ ("net" means it can be negative or zero)
(algebraic) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x$, where $\Delta x=b-a / n$ and x_{i}^{*} is any point in the i th subinterval of width Δx of $[a, b]$, as long as the limit exists

Rieman Sum

(geometric) an approximation of the area under a curve using a finite number of rectangles (algebraic) $\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x$, where $\Delta x=(b-a) / n$ and x_{i}^{*} is any point in the i th subinterval of width Δx of $[a, b]$
choices of sample point for Riemann sums
right endpoint $x_{i}^{*}=a+i \Delta x$
left endpoint $\quad x_{i}^{*}=a+(i-1) \Delta x$
midpoint $\quad x_{i}^{*}=a+(i-1 / 2) \Delta x$
f is integrable over $[a, b]$:
(geometric) we can find the area between the curve defined by f over $[a, b]$ and the x-axis (algebraic) the limit $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x$ converges, where x_{i}^{*} and Δx are defined as above indeterminate form: any limit approaching the form $\pm \infty / \pm \infty, \%, \infty-\infty, 0 \times \infty, 0^{0}, 1^{\infty}, \infty^{0}$

Big-Time results or Tools
Theorem (L'Hôpital's Rule). If

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{ \pm \infty}{ \pm \infty} \quad \text { or } \quad \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{0}{0}
$$

then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Algorithm (Newton's Method). Suppose f is differentiable and has a root on (a, b), which we want to approximate to d decimal places.
(1) Let $i=0$ and choose a reasonable initial approximation x_{0};
(2) let $x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}$;
(3) if the first d decimal places of x_{i} and x_{i+1} agree, then the root is approximately x_{i};
(4) otherwise, let $x_{i}=x_{i+1}$, add 1 to i, and return to step 2.

EXAMPLE PROBLEMS

This list is by no means exhaustive.

1. Compute the following limits. Use L'Hôpital's Rule only if necessary.

$$
\begin{gathered}
\lim _{x \rightarrow 0} \frac{x+\sin 8 x}{x} \quad \lim _{x \rightarrow 0} \frac{x+\sin 8 x}{x^{2}} \quad \lim _{x \rightarrow 0^{+}} \frac{\sqrt{x}}{\ln x} \\
\lim _{x \rightarrow \infty} \frac{\sqrt{x}}{\ln x} \lim _{x \rightarrow \infty}\left(x-\sqrt{x^{2}-9}\right) \quad \lim _{x \rightarrow \infty}\left(x-\sqrt{x^{2}-9 x}\right) \\
\lim _{x \rightarrow 0^{+}} x^{1 / x} \quad \lim _{x \rightarrow \infty}\left(1+\frac{2}{x}\right)^{x}
\end{gathered}
$$

2. Find an approximation to the thousandths place for each of the following functions, with the given initial approximation.
(a) $x^{2}-2, x=2$
(b) $\cos x-x, x=0$
3. Name two reasons Newton's Method can fail, even when the function has a root.
4. Find the indicated area using only geometric methods. Explain your computation. Drawing a picture would go a long way towards an explanation, but some words are probably necessary. Merely writing a formula is insufficient!

$$
\int_{a}^{b} c d x \quad \int_{-3}^{3} x d x \quad \int_{2}^{5} x d x \quad \int_{0}^{6}(3-x)-\sqrt{36-x^{2}} d x
$$

5. Approximate the indicated area using three rectangles. Evaluate once using left endpoints, once using right endpoints, and once using midpoints. Compare your answers to the corresponding result in \#4, and comment on the results (overestimate, underestimate, etc.).

$$
\int_{2}^{5} x d x
$$

6. Evaluate the indicated area using the definition of the integral and right endpoints as the sample points. Is this an overestimate, an underestimate, or other? Why?

$$
\int_{0}^{3} x^{2} d x
$$

7. A particle travels at $v(t)=(x-2)^{3}$ meters/second from $t=0$ to $t=4$ seconds.
(a) Use geometry to explain why the particle's displacement after four seconds is 0 .
(b) Divide the interval $[0,4]$ into four subintervals and use a Riemann sum with midpoints to approximate the particle's displacement. Explain why your approximation is so good in this case.
(c) Would you have such a good approximation if you used right endpoints instead? Why or why not?
(d) Use the definition of the integral and right endpoints to evaluate the displacement of the particle after 4 seconds. Notice that your answer should agree with part (a)!
