HOMEWORK QUIZ 5 SOLUTIONS (CORRECTION TO P. 420 \#15)

p. 420

15. We can view a tetrahedron as an accumulation of equilateral triangles. We can view this as accumulation as we move along the x-axis from the origin to the height of the tetrahedron:

The area of an equilateral triangle comes from the fact that dropping an altitude turns it into a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle:

The base of the triangle has length s; the height has length $s \sqrt{3} / 2$ (you can find this "easily" using the Pythagorean Theorem), so the area is $s^{2} \sqrt{3} / 4$. The volume is thus

$$
V=\int_{0}^{h} \frac{s^{2} \sqrt{3}}{4} d x
$$

We now need to do two things: find h, then express s as a function of x.
To find h, drop an altitude from the tip of the tetrahedron to its base. (This altitude runs along the x-axis.) Call the point where this altitude intersects the base P. The Law of Sines tells us that the length from P to any corner is $4 / \sqrt{3}$. To see, why consider that the base of the tetrahedron looks like so:

By the Law of Sines,
$\frac{\sin 120^{\circ}}{4}=\frac{\sin 30^{\circ}}{a} \Longrightarrow \frac{4}{\sin 120^{\circ}}=\frac{a}{\sin 30^{\circ}} \quad \Longrightarrow \quad \frac{4}{\sqrt{3} / 2}=\frac{a}{1 / 2} \quad \Longrightarrow \quad \frac{4}{\sqrt{3}}=a$.
Now look at the triangle formed by a side of the tetrahedron of length 4, the altitude of length h, and any of those lines of length $a=4 / \sqrt{3}$. The Pythagorean Theorem tells us that $a^{2}+h^{2}=4^{2}$, so $h=\sqrt{32 / 3}=4 \sqrt{2} / \sqrt{3}$.

To express s as a function of x, observe that when $x=h=4 \sqrt{2} / \sqrt{3}$, the side length s is 4 . This gives us a proportion that we can solve for s :

$$
\frac{x}{4 \sqrt{2} / \sqrt{3}}=\frac{s}{4} \quad \Longrightarrow \quad s=\frac{x \sqrt{3}}{\sqrt{2}}
$$

We can now substitute for s and h in our formula for volume:

$$
\begin{aligned}
V & =\int_{0}^{h} \frac{s^{2} \sqrt{3}}{4} d x \\
& =\int_{0}^{h}\left(\frac{\sqrt{3}}{\sqrt{2}} \cdot x\right)^{2} \cdot \frac{\sqrt{3}}{4} d x \\
& =\frac{3 \sqrt{3}}{8} \int_{0}^{h} x^{2} d x \\
& =\left.\frac{3 \sqrt{3}}{8} \cdot \frac{x^{3}}{3}\right|_{0} ^{h} \\
& =\frac{\not 2 \sqrt{3}}{8} \cdot\left(\frac{\left(\frac{4 \sqrt{2}}{\sqrt{3}}\right)^{3}}{\not 3}-0\right) \\
& =\frac{\sqrt{3}}{\not 又} \cdot \frac{64^{\neq} \cdot 2 \sqrt{2}}{3 \sqrt{3}} \\
& =\frac{16 \sqrt{2}}{3} .
\end{aligned}
$$

