HOMEWORK QUIZ 3 SOLUTIONS

p. 366
23. $\int_{0}^{1} x^{2}-2 x+3 d x=x^{3} / 3-x^{2}+\left.3 x\right|_{0} ^{1}=1 / 3-1+3=7 / 3$. This seems consistent, because the area should be more than the rectangle, which has area 2 , but only by a little, since the triangle enclosing the area above the rectangle would have area $1 / 2 \cdot 1 \cdot 1=1 / 2$.
39. $\int_{0}^{\pi / 4} \sec ^{2} \theta d \theta=\left.\tan \theta\right|_{0} ^{\pi / 4}=1-0=1$.
45. $\int_{1}^{2} 3 / t d t=\left.3 \ln t\right|_{1} ^{2}=3 \ln 2-3 \ln 0=3 \ln 2$.
p. 383
15. Let $u=\sin x$. Since $u^{\prime}=\cos x$, we have $\int \sin ^{3} x \cos x d x=\int u^{3} u^{\prime} d x=\int u^{3} d u=$ $u^{4} / 4+C=\sin ^{4} x / 4+C$.
19. Let $u=1-4 x^{3}$. Since $u^{\prime}=-12 x^{2}$, we have

$$
\begin{aligned}
\int \frac{2}{\sqrt{1-4 x^{3}}} d x & =2 \cdot \underbrace{\left(-\frac{1}{12}\right)}_{\text {to balance } u^{\prime}} \int \frac{1}{\sqrt{1-4 x^{3}}} \cdot \underbrace{\left(-12 x^{2}\right)}_{u^{\prime}} d x \\
& =-\frac{1}{6} \int \frac{1}{\sqrt{u}} u^{\prime} d x \\
& =-\frac{1}{6} \int \frac{1}{\sqrt{u}} d u \\
& =-\frac{1}{6} \int u^{-1 / 2} d u \\
& =-\frac{1}{6} \cdot\left(\frac{u^{1 / 2}}{1 / 2}+C\right) \\
& =-\frac{1}{3} \sqrt{1-4 x^{3}}+C .
\end{aligned}
$$

29. Let $u=2 x$. Since $u^{\prime}=2$, we have
$\int \frac{d x}{1+4 x^{2}}=\underset{\text { to balance } u^{\prime}}{\frac{1}{2}} \int \frac{1}{1+u^{2}} \underset{u^{\prime}}{2} d x=\frac{1}{2} \int \frac{1}{1+u^{2}} d u=\frac{1}{2} \tan ^{-1} u+C=\frac{1}{2} \tan ^{-1} 2 x+C$.
30. Let $u=x+4$. Since $x=u-4$ and $u^{\prime}=1$, we have

$$
\begin{aligned}
\int \frac{x}{\sqrt[3]{x+4}} d x & =\int \frac{u-4}{\sqrt[3]{u}} u^{\prime} d x \\
& =\int \frac{u}{\sqrt[3]{u}}-\frac{4}{\sqrt[3]{u}} d u \\
& =\int u^{2 / 3}-4 u^{-1 / 3} d u \\
& =\frac{u^{5 / 3}}{5 / 3}-4 \cdot \frac{u^{2 / 3}}{2 / 3} \\
& =\frac{3 \sqrt[3]{(x+4)^{5}}}{5}-6 \sqrt[3]{(x+4)^{2}}
\end{aligned}
$$

This can be written in a form similar to the book's, but I'm having none of that here. See me if you want to see how to do that.
51. Let $u=3 x$. Since $u^{\prime}=3$, we have

$$
\begin{aligned}
\int_{1 / 3}^{1 / \sqrt{3}} \frac{4}{9 x^{2}+1} d x & =4 \cdot{\underset{\text { to balance } u^{\prime}}{\frac{1}{3}} \int_{x=1 / 3}^{1 / \sqrt{3}} \frac{1}{u^{2}+1} \cdot \underset{u^{\prime}}{3} d x}=\frac{4}{3} \int_{x=1 / 3}^{1 / \sqrt{3}} \frac{1}{u^{2}+1} d u \\
& =\left.\frac{4}{3} \tan ^{-1} u\right|_{x=1 / 3} ^{1 / \sqrt{3}} \\
& =\left.\frac{4}{3} \tan ^{-1} 3 x\right|_{x=1 / 3} ^{1 / \sqrt{3}} \\
& =\frac{4}{3}\left(\tan ^{-1} \frac{3}{\sqrt{3}}-\tan ^{-1} 1\right) \\
& =\frac{4}{3}\left(\frac{\pi}{3}-\frac{\pi}{4}\right)=\frac{\pi}{12} .
\end{aligned}
$$

53. We have to use the half-angle formula here.

$$
\begin{aligned}
\int_{-\pi}^{\pi} \cos ^{2} x d x & =\int_{-\pi}^{\pi} \frac{1+\cos 2 x}{2} d x \\
& =\frac{1}{2} \int_{-\pi}^{\pi} 1+\cos 2 x d x \\
& =\left.\frac{1}{2}\left(x+\frac{\sin 2 x}{2}\right)\right|_{-\pi} ^{\pi} \\
& =\frac{1}{2}[(\pi+0)-(-\pi+0)] \\
& =\frac{2 \pi}{2}=\pi
\end{aligned}
$$

77. The denominator factors as $(3 x+1)^{2}$. Let $u=3 x+1$. Since $u^{\prime}=3$, we have

$$
\begin{aligned}
\int_{1}^{2} \frac{4}{9 x^{2}+6 x+1} d x & =\int_{1}^{2} \frac{4}{(3 x+1)^{2}} d x \\
& =4 \cdot \underbrace{\frac{1}{3}}_{\text {to balance } u^{\prime}} \int_{x=1}^{2} \frac{1}{u^{2}} \cdot \underbrace{3}_{u^{\prime}} d x \\
& =\frac{4}{3} \int_{x=1}^{2} u^{-2} d u \\
& =\frac{4}{3} \cdot-\left.u^{-1}\right|_{x=1} ^{2} \\
& =-\left.\frac{4}{3} \cdot \frac{1}{3 x+1}\right|_{1} ^{2} \\
& =-\frac{4}{3}\left(\frac{1}{7}-\frac{1}{4}\right) \\
& =\frac{1}{7}
\end{aligned}
$$

93. The area of the first diagram is

$$
A_{1}=\int_{4}^{9} \frac{(\sqrt{x}-1)^{2}}{2 \sqrt{x}} d x
$$

To evaluate it, we could let $u=\sqrt{x}-1$. Since $u^{\prime}=1 / 2 \sqrt{x}$, we have

$$
A_{1}=\int_{x=4}^{9} u^{2} u^{\prime} d x=\int_{x=4}^{9} u^{2} d u
$$

We could also replace the limits of integration by their corresponding values of u. Since $u=\sqrt{x}-1$, we have $u(4)=1$ and $u(9)=2$. That gives us

$$
A_{1}=\int_{1}^{2} u^{2} d u
$$

This is almost identical to the area of the second diagram,

$$
A_{2}=\int_{1}^{2} x^{2} d x
$$

The only difference is the variable name, x or u. But, as Shakespeare put it,

What's in a name? that which we call a rose
By any other name would smell as sweet;
So Romeo would, were he not Romeo call'd,
Retain that dear perfection which he owes
Without that title. Romeo, doff thy name;
And for that name, which is no part of thee, Take all myself.

So we can doff the u, put on (a different) x, and take Juli... er, the area itself.
102. Let $u=a x$. Since $u^{\prime}=a$, we have

$$
\begin{aligned}
\int \sin ^{2} a x d x & =\underset{\substack{\text { to balance } u^{\prime}} \frac{1}{a} \int \sin ^{2} u \cdot \underset{u^{\prime}}{a} d x}{ }=\frac{1}{a} \int \sin ^{2} u u^{\prime} d x \\
& =\frac{1}{a} \int \sin ^{2} u d u \\
& =\frac{1}{a} \int \frac{1-\cos 2 u}{2} d u \\
& =\frac{1}{2 a}\left(u-\frac{\sin 2 u}{2}+C\right) \\
& =\frac{u}{2 a}-\frac{\sin 2 u}{4 a}+C \\
& =\frac{x}{2}-\frac{\sin (2 a x)}{4 a}+C
\end{aligned}
$$

and

$$
\begin{aligned}
\int \cos ^{2} a x d x & =\underset{\substack{\text { to balance } u^{\prime}} \frac{1}{a} \int \cos ^{2} u \cdot \underset{u^{\prime}}{a} d x}{ }=\frac{1}{a} \int \cos ^{2} u u^{\prime} d x \\
& =\frac{1}{a} \int \cos ^{2} u d u \\
& =\frac{1}{a} \int \frac{1+\cos 2 u}{2} d u \\
& =\frac{1}{2 a}\left(u+\frac{\sin 2 u}{2}+C\right) \\
& =\frac{u}{2 a}+\frac{\sin 2 u}{4 a}+C \\
& =\frac{x}{2}+\frac{\sin (2 a x)}{4 a}+C .
\end{aligned}
$$

