p. 336
13. The displacement is approximately

$$
\begin{aligned}
v(0) \cdot 2+v(2) \cdot 2+v(4) \cdot 2+v(6) \cdot 2 & =1 \cdot 2+\frac{1}{5} \cdot 2+\frac{1}{9} \cdot 2+\frac{1}{13} \cdot 2 \\
& =\frac{1624}{585} \\
& \approx 2.7761
\end{aligned}
$$

35. The Left Riemann Sum is

$$
5 \times .5+3 \times .5+2 \times .5+1 \times .5=5.5
$$

while the Right Riemann Sum is

$$
3 \times .5+2 \times .5+1 \times .5+1 \times .5=3.5
$$

67. (a) The object accelerates over 1 sec to $20 \mathrm{~m} / \mathrm{s}$, continues at that speed for 2 sec , decelerates for 2 sec to $10 \mathrm{~m} / \mathrm{s}$, and continues at that speed for at least 1 sec .
(b) $1 / 2 \times 1 \times 20+1 \times 20=30$
(c) $1 \times 20+1 / 2 \times 2 \times(20+10)=50$
(d) The object's displacement over the first two periods is 80 . That gets us to $t=5$; thenceforth the particle proceeds at $10 \mathrm{~m} / \mathrm{s}$, whence its displacement is $80+10(t-5)$. (We have to subtract 5 in order to determine how much time after 5 seconds has passed.) The book simplifies that expression to $30+10 t$.

p. 351

7. A figure with no width is one-dimensional, so there can be no area.
8. A sketch of the figure should look like this:

As the figure is a quarter circle, its area is $1 / 4 \times \pi \times 4^{2}=4 \pi$.
39. $\int_{0}^{2 \pi} x \sin x d x=\not \subset+(\mathbb{x}-\not \subset)-(\mathbb{K}+\mathbb{X})-(2 \pi-\not \subset)=-2 \pi$
43. (a) $5 \int_{0}^{3} f(x) d x=5 \times 2=10$
(b) $-3 \int_{3}^{6} g(x) d x=-3 \times 1=-3$
(c) $3 \int_{3}^{6} f(x) d x-\int_{3}^{6} g(x) d x=3(-5)-1=-16$
(d) $-\int_{3}^{6} f(x) d x-2 \int_{3}^{6} g(x) d x=-(-5)-2(1)=3$
51. We have $a=1$ and $b=4$, so $\Delta x=3 / n$. For right endpoints we use $x_{i}^{*}=a+i \Delta x=1+3 i / n$. Now apply the definition of the integral:

$$
\begin{aligned}
\int_{1}^{4}\left(x^{2}-1\right) d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[\left(1+\frac{3 i}{n}\right)^{2}-1\right] \cdot \frac{3}{n} \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[\left(\not \subset+\frac{6 i}{n}+\frac{9 i^{2}}{n^{2}}\right)-\not \subset\right] \cdot \frac{3}{n} \\
& =\lim _{n \rightarrow \infty}\left[\frac{3}{n}\left(\frac{6}{n} \sum_{i=1}^{n} i+\frac{9}{n^{2}} \sum_{i=1}^{n} i^{2}\right)\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{3}{n}\left(\frac{6}{\not x} \cdot \frac{\not x(n+1)}{2}+\frac{9}{n^{\not 又}} \cdot \frac{\not x(n+1)(2 n+1)}{6}\right)\right] \\
& =\frac{3 \cdot 6}{2} \cdot \lim _{n \rightarrow \infty} \frac{n+1}{n}+\frac{3 \cdot 9}{6} \cdot \lim _{n \rightarrow \infty} \frac{(n+1)(2 n+1)}{n^{2}} \\
& =9 \cdot \lim _{n \rightarrow \infty} \frac{n+1}{n}+\frac{9}{2} \cdot \lim _{n \rightarrow \infty} \frac{2 n^{2}+3 n+1}{n^{2}} \\
& \stackrel{\text { L'H }^{\prime} H}{=} 9 \cdot \lim _{n \rightarrow \infty} \frac{1}{1}+\frac{9}{2} \cdot \lim _{n \rightarrow \infty} \frac{4 n+3}{2 n} \\
& \stackrel{\text { L'H }}{=} 9 \cdot 1+\frac{9}{2} \cdot \lim _{n \rightarrow \infty} \frac{4}{2} \\
& \stackrel{\text { L'H }}{=} 9 \cdot 1+\frac{9}{2} \cdot 2 \\
& =9+9 \\
& =18 .
\end{aligned}
$$

73. A sketch of the figure should look like this:

The area is thus $1 / 2 \times 1 \times 2+1 / 2 \times 4 \times 8=1+16=17$.

