p. 300
6. An example of a limit whose form as $x \rightarrow 0$ is ∞ / ∞ is $\lim _{x \rightarrow 0} \ln x /(1 / x)$.
17. Don't forget that ln only applies to one symbol on its right, unless parentheses are involved.

$$
\lim _{x \rightarrow e} \frac{\ln x-1}{x-e} \searrow_{\searrow e-e=0}^{\ln e-1=0} \stackrel{\mathrm{~L}^{\prime} \mathrm{H}}{=} \lim _{x \rightarrow e} \frac{\frac{1}{x}-0}{1-0}=\frac{1 / e}{1}=\frac{1}{e} .
$$

25. Don't forget the Chain Rule when differentiating the denominator.
$\lim _{x \rightarrow \pi} \frac{\cos x+1}{(x-\pi)^{2}} \searrow_{\searrow(\pi-\pi)^{2}=0}^{\cos \pi+1=0} \stackrel{\mathrm{~L}^{\prime} \mathrm{H}}{=} \lim _{x \rightarrow \pi} \frac{-\sin x+0}{2(x-\pi) \cdot(1-0)} \searrow_{\searrow 2(\pi-\pi)=0}^{\nearrow-\sin \pi=0} \quad \stackrel{\mathrm{~L}^{\prime} \mathrm{H}}{=} \lim _{x \rightarrow \pi} \frac{-\cos x}{2 \cdot 1}=\frac{-\cos \pi}{2}=\frac{1}{2}$.
26.

$$
\begin{array}{cc}
\lim _{\theta \rightarrow \frac{\pi}{2}-}(\tan \theta-\sec \theta) & \rightarrow \infty-\infty \\
\lim _{\theta \rightarrow \frac{\pi}{2}-}\left(\frac{\sin \theta}{\cos \theta}-\frac{1}{\cos \theta}\right) & \\
\lim _{\theta \rightarrow \frac{\pi}{2}-}\left(\frac{\sin \theta-1}{\cos \theta}\right) & \nearrow \sin \frac{\pi}{2}-1=0 \\
\lim _{\theta \rightarrow \frac{\pi}{2}-} \frac{\cos \theta}{-\sin \theta} & \searrow \cos \frac{\pi}{2}=0 \\
0 \cos \frac{\pi}{2}=0 \\
\frac{0}{-1} & \\
0 &
\end{array}
$$

69. This is covered in the textbook on pp. 297-299. We compute
$\lim _{x \rightarrow \infty} \frac{x^{10}}{e^{.01 x}} \nearrow_{\searrow \infty}^{\infty}=\lim _{x \rightarrow \infty} \frac{10 x^{9}}{.01 e^{.01 x}} \nearrow_{\searrow \infty}^{\infty}=\lim _{x \rightarrow \infty} \frac{10 \cdot 9 x^{8}}{(.01)^{2} e^{.01 x}} \nearrow_{\searrow \infty}^{\infty}=\cdots=\lim _{x \rightarrow \infty} \frac{10!}{(.01)^{10} e^{.01 x}} \searrow_{\infty}^{10!} \rightarrow 0$.
When the limit of the ratios of the functions is 0 , the denominator grows much faster than the numerator. Hence $e^{.01 x}$ grows much faters than x^{10}.

Remark: When we write an excalamation point to the right of a number, it means to multiply that number to all the positive integers below it. In this case, $10!=10 \times 9 \times 8 \times 7 \times$ $\cdots \times 2 \times 1$.
103. (a) Compound interest pays (or charges) interest on the balance in the account at the end of each compounding period. Here,

$$
\begin{aligned}
B(0) & =\underbrace{P}_{\text {initial deposit }} \cdot \\
B(1) & =\underbrace{P}_{\text {initial deposit }}+\underbrace{P r}_{\text {interest on balance }} \\
& =P(1+r) \cdot \\
B(2) & =\underbrace{P(1+r)}_{\text {amount in account after } 1 \text { yr }}+\underbrace{[P(1+r)] r}_{\text {interest on balance }} \\
& =\underbrace{P(1+r)}_{\text {common factor }} \times(\underbrace{1}_{\frac{P(1+r)}{P(1+r)}}+\underbrace{r}_{\frac{[P(1+r)] r}{P(1+r)}}) \\
& =P(1+r)^{2} \\
& \vdots \\
B(t) & =\underbrace{P(1+r r)^{t-1}}_{\text {amount in account after } t-1 \text { years }}+\underbrace{\left.P(1+r)^{t-1}\right]}_{\text {interest on balance }} r \\
& =\underbrace{P(1+r)^{t-1}}_{\text {common factor }} \times(\underbrace{P(\underbrace{P(1+r}_{\frac{\left[P(1+r)^{t-1] r}\right.}{P(1+r)^{t-1}}})}_{\frac{P(1+r))^{t-1}}{P(1+r)^{t-1}}} \\
& =P(1+r)^{t-1} \cdot
\end{aligned}
$$

(b) Since

$$
\lim _{m \rightarrow \infty} P\left(1+\frac{r}{m}\right)^{m t}=P \cdot \lim _{m \rightarrow \infty}\left(1+\frac{r}{m}\right)^{m t} \rightarrow P \cdot(1+0)^{\infty}
$$

we see the indeterminate form 1^{∞} and realize we need to rewrite the experssion using a logarithm. Let $y=(1+r / m)^{m t}$ (the problematic part of the limit); by properties of logarithms,

$$
\ln y=\ln (1+r / m)^{m t}=(m t) \ln (1+r / m),
$$

so instead of $\ln y$ we consider
$\lim _{m \rightarrow \infty} \ln y=\lim _{m \rightarrow \infty}(m t) \ln (1+r / m) \rightarrow m \cdot \infty \cdot \ln (1+0) \rightarrow m \cdot \infty \cdot \ln 1 \rightarrow m \cdot \infty \cdot 0$.
We cannot apply L'Hôpital's Rule directly to this expression; we need to rewrite it so that the limit approaches $\%$ or $\pm \infty / \pm \infty$. In this case, the easier way to accmplish this is to write
$\lim _{m \rightarrow \infty} \frac{\ln (1+r / m)}{1 / m t} \nearrow_{\searrow 1 / \infty \rightarrow 0}^{\ln (1+0) \rightarrow 0} \stackrel{\mathrm{~L}^{\prime} H}{=}=\lim _{m \rightarrow \infty} \frac{\frac{1}{1+r / m} \cdot\left(-r / m n^{2}\right)}{-1 / m^{2} \cdot 1 / t}=\lim _{m \rightarrow \infty}\left(r t \times \frac{1}{1+r / m}\right) \rightarrow r t \times \frac{1}{1+0}=r t$.
This is the limit of $\ln y$. Substituting into its definition, we have

$$
\lim _{m \rightarrow \infty} \ln y=r t \Rightarrow \ln \left(\lim _{m \rightarrow \infty} y\right)=r t \quad \Rightarrow \quad \lim _{m \rightarrow \infty} y=e^{r t}
$$

We wanted $\lim _{m \rightarrow \infty} y$ to start with; combining with the P that we omitted while we worked on the limit, we have

$$
\lim _{m \rightarrow \infty} P\left(1+\frac{r}{m}\right)^{m t}=P e^{r t}
$$

as claimed.
p. 309

1. Newton's method approximates roots of a function using roots of tangents lines. Near the point of intersection, a tangent line travels in roughly the same direction as the curve. So, if we compute a tangent line near the actual root, the tangent line's root should approximate the actual root.
2. Use

$$
x_{i+1}=-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}+x_{i}=-\frac{x_{i}^{2}-6}{2 x_{i}}+x_{i} .
$$

If we start at $x_{0}=3$, this gives us the successive approximations $x_{1}=2.5$ and $x_{2}=2.45$, which rounds to 2.50 . We can therefore stop the algorithm.
15. For the root of $f(x)=\sin x-x / 2$, use

$$
x_{i+1}=-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}+x_{i}=-\frac{\sin x_{i}-x / 2}{\cos x_{i}-1 / 2} .
$$

A glance at a graph suggests that $x=2$ is close to the root. Starting from there, we obtain the approximations

$$
x_{0}=2, \quad x_{1}=1.90, \quad x_{2}=1.90
$$

so we take $x \approx 1.90$ as one root. A second glance at the graph suggests $x=0$ is close to the root. In fact, $x=0$ is a root, as we discover if we try to use Newton's method. A third glance shows that $x=-2$ is close to the root. While skipping the details, we point out that this gives

$$
x_{0}=-2, \quad x_{1}=-1.90, \quad x_{2}=-1.90
$$

So the there roots are approximately $x=0, x=1.90$, and $x=-1.90$.
27. (a) True: We approximate using roots of tangent lines. The tangent lines are themselves approximations to the curve at the points of intersection.
(b) False: The quadratic formula gives exact answers, but Newton's Method provides only approximate answers.
(c) False: Newton's method can find the exact root in certain circumstance; for example, when $f(x)=m x+b$ for non-zero integers m and b.

