MAT 167 TEST 2 FORM B (DERIVATIVES)

Directions: Solve each required problem on a separate sheet of paper. Use pencil and show all work; I deduct points for using pen or skipping important steps. You must shut off your cell phone. Some problems are worth more than others. Take your time; quality is preferred to quantity. I encourage you to ask questions.

1. (a) How would you describe a differentiable function, in geometric terms?

Solution: Smooth. (That one word would suffice, but if you want to add "no corners, cusps, or discontinuities," I'm happy with that, too. Or with that, instead.)
(b) If a function is continuous at a point a, is it differentiable at a ?

Solution: Not necessarily, as $f(x)=|x|$ shows. I accepted "no", though technically "no" is incorrect: it isn't always false.
(c) If a function is differentiable at a point a, is it continuous at a ?

Solution: Yes. (That one word would suffice. If you want to say more, you should say that, "A function cannot be smooth if it has corners, cusps, and discontinuities.)
2. Let $f(x)=13$.
(a) Give an intuitive explanation as to why $f^{\prime}(x)=0$ at every value of x.

Solution: The function is a borizontal line, so its slope is 0 . To go in the same direction as the "curve", the line tangent to f must have the same slope. The slope of the tangent line is the derivative, so the derivative of f is 0 .
(b) Use the precise definition of the derivative to show that $f^{\prime}(x)=0$ at every value of x. Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{3-3}{h} \\
& =\lim _{h \rightarrow 0} \frac{0}{h} \\
& =\lim _{h \rightarrow 0} 0 \\
& =0 .
\end{aligned}
$$

3. Compute the derivatives of the following functions.
(a) $f(x)=x-\frac{3}{x^{2}}$
(b) $g(x)=\cos (2 x)-3 \sec x$
(c) $h(x)=x e^{x}$
(d) $F(x)=x^{x}$
(e) $G(x)=\frac{e^{x}(x-3)^{14}(2 x+1)^{3}}{x^{5}(x-3)^{2} \cos ^{3} x}$
(f) $H(x)=\left(1+\tan ^{-1} x\right)^{2}$

Solutions:

(a) I personally would rewrite $f(x)=x-3 x^{-2}$, so that it is "easy" to see that $f^{\prime}(x)=$ $1-3(-2) x^{-3}$, or $f^{\prime}(x)=1+\frac{6}{x^{3}}$. You could also use the quotient rule, but try to remember that the derivative of a constant is 0 :

$$
f^{\prime}(x)=1-\frac{0 \cdot x^{2}-3 \cdot 2 x^{1}}{\left(x^{2}\right)^{2}}=1+\frac{6 x}{x^{4}}=1+\frac{6}{x^{3}}
$$

(b) Notice the chain rule in action, as well as the constant multiple rule: $g^{\prime}(x)=-\sin (2 x)$. $2-3 \sec x \tan x$.
(c) Notice the product rule in action: $h^{\prime}(x)=1 \cdot e^{x}+x \cdot e^{x}=e^{x}+x e^{x}$. I'm okay with that answer, but if you have a yen to do more, the only correct option you have is to factor: $b^{\prime}(x)=e^{x}(1+x)$.
(d) The only way to do this problem is via logarithmic differentiation:

$$
\begin{aligned}
y & =x^{x} & & \\
\ln y & =\ln x^{x} & & \\
\ln y & =x \ln x & & \text { (power rule for logarithms) } \\
\frac{1}{y} \cdot y^{\prime} & =1 \cdot \ln x+x \cdot \frac{1}{x} & & \text { (product rule of differentiation) } \\
\frac{y^{\prime}}{y} & =\ln x+1 & & \text { (a little algebra makes the world a prettier place) } \\
y^{\prime} & =y(\ln x+1) & & \text { (isolate } \left.y^{\prime}\right) \\
y^{\prime} & =x^{x}(\ln x+1) & & \text { (substitute original value of } y)
\end{aligned}
$$

(e) The smart way to do this is by logarithmic differentiation:

$$
\begin{aligned}
\ln y= & \ln \frac{e^{x}(x-3)^{14}(2 x+1)^{3}}{x^{5}(x-3)^{2} \cos ^{3} x} & & (G(x) \text { is a fancy name for } y) \\
= & \ln \left[e^{x}(x-3)^{14}(2 x+1)^{3}\right] & & \text { (quotient rule for logarithms) } \\
& -\ln \left[x^{5}(x-3)^{2} \cos ^{3} x\right] & & \\
= & \ln e^{x}+\ln (x-3)^{14}+\ln (2 x+1)^{3} & & \text { (product rule for logarithms) } \\
& -\left[\ln x^{5}+\ln (x-3)^{2}+\ln \cos ^{3} x\right] & & \text { (e and ln xare inverses, } \\
= & x+14 \ln (x-3)+3 \ln (2 x+1) & & \text { and power rule for logarithms) } \\
& -[5 \ln x+2 \ln (x-3)+3 \ln \cos x] & & \text { (differentiate, using constant multiple } \\
\frac{1}{y} \cdot y^{\prime}= & 1+14 \cdot \frac{1}{x-3} \cdot 1+3 \cdot \frac{1}{2 x+1} \cdot 2 & & \text { and chain rules) }
\end{aligned}
$$

$$
\begin{aligned}
\frac{y^{\prime}}{y}= & 1+\frac{14}{x-3}+\frac{6}{2 x+1}-\frac{5}{x}-\frac{2}{x-3}+3 \tan x \quad \text { (a little algebraic art) } \\
y^{\prime}= & y\left(1+\frac{14}{x-3}+\frac{6}{2 x+1}-\frac{5}{x}-\frac{2}{x-3}+3 \tan x\right) \text { (isolate } y \text {) } \\
y^{\prime}= & \frac{e^{x}(x-3)^{14}(2 x+1)^{3}}{x^{5}(x-3)^{2} \cos ^{3} x} \\
& \quad \cdot\left(1+\frac{14}{x-3}+\frac{6}{2 x+1}-\frac{5}{x}-\frac{2}{x-3}+3 \tan x\right)
\end{aligned}
$$

If you're really uncomfortable with logarithms, you can do it with the quotient, product, and chain rules for derivatives, but it's nasty as all get-out:

$$
\begin{aligned}
G^{\prime}(x)= & \frac{\left[e^{x}(x-3)^{14}(2 x+1)^{3}+e^{x} \cdot 14(x-3)^{13} \cdot 1 \cdot(2 x+1)^{3}+e^{x}(x-3)^{14} \cdot 3(2 x+1)^{2} \cdot 2\right] \cdot x^{5}(x-3)^{2} \cos ^{3} x \cdots}{\left[x^{5}(x-3)^{2} \cos ^{3} x\right]^{2}} \\
& \frac{e^{x}(x-3)^{14}(2 x+1)^{3}\left[5 x^{4}(x-3)^{2} \cos ^{3} x+x^{5} \cdot 2(x-3) \cdot \cos ^{3} x+x^{5}(x-3)^{2} \cdot 3 \cos ^{2} x \cdot(-\sin x)\right]}{}
\end{aligned}
$$

and no, I won't simplify that further, thank you.
(d) Notice the chain rule in action, and the fact that $\tan ^{-1} x$ bas nothing to do with $\sec x$:

$$
F^{\prime}(x)=2\left(1+\tan ^{-1} x\right) \cdot\left(0+\frac{1}{1+x^{2}}\right)=\frac{2\left(1+\tan ^{-1} x\right)}{1+x^{2}}
$$

4. Use implicit differentiation to compute the equation of the line tangent to the curve described by $y^{3}+y=x^{3}-x$ at the point $(-1,0)$.

Solution:

$$
\begin{aligned}
3 y^{2} \cdot y^{\prime}+y^{\prime} & =3 x^{2}-1\left(\text { differentiate }- \text { don't forget } y^{\prime}\right) \\
\left(3 y^{2}+1\right) y^{\prime} & =3 x^{2}-1(\text { factor the common term }) \\
y^{\prime} & =\frac{3 x^{2}-1}{3 y^{2}+1}\left(\text { isolate } y^{\prime}\right)
\end{aligned}
$$

We can now use the derivative to find the slope of the tangent line, by substituting the given values of x and y :

$$
m_{\tan }=\frac{3 \cdot(-1)^{2}-1}{3 \cdot 0^{2}+1}=\frac{2}{1}=2
$$

This allows us to write the equation of a line:

$$
y-0=2 \cdot(x-(-1)) .
$$

If you had written only this far, I would be bappy. After all, it is the equation of a line! However, if you decided to take it farther, then be careful. You should have this:

$$
y=2 x+2
$$

5. Use the graph of $f(x)$ given below to answer the following questions.
(a) At what point(s) is f discontinuous?

Solution: Never! There are no boles, jumps, or asymptotes.
(b) At what point(s) is f nondifferentiable?

Solution: At $(1,-1)$.
(c) At what point(s) does f have the largest slope?

Solution: Any point on the interval ($1,3 \frac{1}{2}$) would make me happy.
(d) Rank the values $x=1 / 2, x=2, x=3 \frac{1}{2}$, and $x=4 \frac{1}{2}$ from smallest to largest slope of f. Solution: Negative slopes are smaller, so in order, they should be:

$$
\frac{1}{2}, 4 \frac{1}{2}, 3 \frac{1}{2}, 2
$$

