
MAT 167 TEST 3 REVIEW

1.1. Provide an “intuitive,” “geometric,” and/or “precise” descriptions for four of the concepts
or results listed below, as directed.
(a) The Mean Value Theorem. (intuitive/geometric and precise)
(b) A critical point. (intuitive/geometric and precise)
(c) Concave up or down. (intuitive/geometric and precise)
(d) An inflection point. (intuitive/geometric and precise)
(e) A local maximum or minimum.

Solutions:
(a) intuitive: If a function f is very well-behaved on the interval [a, b ], then we can find a point

between a and b whose tangent line has the same slope as the secant line connecting a’s and
b ’s points.
precise: If f (x) is continuous on [a, b ] and differentiable on (a, b ), then there exists c ∈
(a, b ) such that

f ′ (c) =
f (b )− f (a)

b − a
.

(b) intuitive: A critical point is where a graph is either level or not smooth.
precise: x = a is a critical point if f (a) = 0 or f ′ (a) does not exist.

(c) intuitive: A function is concave up (resp. down) when its curve bends upward (resp. down-
ward).
precise: A function is concave up (resp. down) at x = a when its derivative is increasing (resp.
decreasing) at x = a; or, when f ′′ (a)> 0 (resp. f ′′ (a)< 0).

(d) intuitive and precise: An inflection point is where a function’s concavity changes from up to
down or vice versa.

(e) intuitive: A local maximum (resp. minimum) is the largest (resp. smallest) y-value in a
neighborhood.
precise: x = c is a local maximum (resp. minimum) if c ∈ (a, b ) and f (c) ≥ f (x) for all
x ∈ (a, b ).
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1.2. Compute the derivatives of the following functions or equations. (Mostly for review, but
one involves new material you can expect to see on the test.)

(a) g (x) =
sin (x)+ 1

cos x
(b) f (t ) = arcsin (3t )

(c) y = 10 ln
�

x2 + 1
�

(d) p (x) = e2x cos2x

(e) sin (x + y) = sin x + sin y (f) H (x) = (3x)3x

Solutions:

(a) Use the quotient rule:

g ′ (x) =

�

d
d x (sin x + 1)

�

· cos x− (sin x + 1) · d
d x cos x

cos2 x

=
cos x · cos x− (sin x + 1) · (− sin x)

cos2 x

=
cos2 x + sin x (sin x + 1)

cos2 x
.

You can simplify this to

g ′ (x) =
1+ sin x

cos2 x

and possibly to other expressions, but the second line would actually suffice.
(b) This involves one of those functions you see often enough to forget. Also, you’ll need the

Chain Rule:
d
d t

arcsin (3t ) =
1

1+(3t )2 ·3 =
3

1+ 9t 2
.

(c) Again, you need the Chain Rule:

d y
d x

= 10
︸︷︷︸

const. mult.

· 1
x2 + 1
︸ ︷︷ ︸

deriv. of log

· 2x
︸︷︷︸

chain

=
20x

x2 + 1
.

(d) You’ll want the product rule and the Chian Rule:

p ′ (x) =
�

e2x ·2
�

· cos2x + e2x · (− sin2x ·2) = 2e2x (cos2x− sin2x) .



(e) Here you need Implicit Differentiation, which is on Test 3!

sin (x + y) = sin x + sin y

cos (x + y) ·
�

1+ y ′
�

= cos x + cos y · y ′

cos (x + y)+ y ′ cos (x + y) = cos x + y ′ cos y

y ′ cos (x + y)− y ′ cos y = cos x− cos (x + y)

y ′ [cos (x + y)− cos y ] = cos x− cos (x + y)

y ′ =
cos x− cos (x + y)
cos (x + y)− cos y

.

(f) Here you need Logarithmic Differentiation, which is not on Test 3, but you’ll still need it
for the final! Let y = (3x)3x . Then

ln y = ln
�

(3x)3x�

ln y = 3x · ln (3x)
d

d x
[ln y = 3x · ln (3x)]

1
y
· y ′ = 3 · ln (3x)+ 3x · 1

3x
· 3
︸︷︷︸

chain
︸ ︷︷ ︸

product rule

y ′ = y [3 ln (3x)+ 3]

y ′ = (3x)3x [3 ln (3x)+ 3] .



1.4. In the study of ecosystems, predator-prey models are often used to study the interaction
between species. Consider populations of hungry hawks, given by H (t ), and scrumptious
squirrels, given by S (t ), where we measure t in years. The interaction can be modeled by
the equations

d H
d t

=−aH + b H S and
d S
d t

= cS− d H S.

(a) What values of d H/d t and d S/d t correspond to stable populations?

Suppose a = .1, b = .0002, c = .2, d = .02.

(b) If H = 20 and S = 3400, how does each population change: do they increase or decrease?
(c) Do there exist values for H and S such that both populations live in balance? (That is,

both populations are stable.)

Solutions:
(a) “Stable” means the population isn’t changing, so d H/d t = 0 and d S/d t = 0.
(b) By substitution,

d H
d t

=−0.1×20+ 0.0002×20×3400 = 11.6 ,

and
d S
d t

= 0.2×3400−0.02×20×3400 =−680 .

The hungry hawks are increasing by almost 11–12 hawks per year, while the scrumptious
squirrels are decreasing by 680 squirrels per year.

(c) We need d H/d t = 0 and d S/d t = 0 at the same time. That is,

0 =−0.1×H + 0.0002×H × S and 0 = 0.2× S−0.02×H × S .

We can factor a common H from the first equation, yielding

0 = H (−0.1+ 0.0002S) .

By the Zero Product Property, H = 0 or S = 500. Zero hawks is not really a balance (the
squirrels will increase significantly) so we throw out that solution. Similarly, we factor a
common S from the second equation, yielding

0 = S (0.2−0.02H ) .

By the Zero Product Property, S = 0 or H = 10. Zero squirrels is not really a balance (the
hawks will die of starvation) so we throw out that solution. We are left with stability only
when we have 10 hungry hawks and 500 scrumptious squirrels.



1.5. Let
f (x) = cos x +

x
2

.

(a) Find the critical point(s) of f (x) on the interval [0,2π].
(Careful: This involves a periodic function, so there could be more than one answer.
You must list them all.)

(b) Determine the maximum and minimum value(s) of f (x) on the interval [0,2π]. Indi-
cate whether each extremum is relative or absolute.

(c) Determine the intervals of increase and intervals of decrease for f on the interval [0,2π].
(d) Find the possible inflection point(s) of f (x) on the interval [0,2π].
(e) Indicate over which subintervals of [0,2π] f is concave up, and over which interval f

is concave down.
(f) Identify any horizontal or vertical asymptotes of f (x). If there aren’t any, explain why

not.
(g) Combine all this information into a sketch of f (x) over the interval [0,2π].

Solutions:
(a) The first derivative is f ′ (x) =− sin x + 1/2. This is never undefined, so critical points occur

only when f ′ (x) = 0; that is, when sin x = 1/2; that is, when x = π/6, 5π/6.
(b) The y-values we have to consider occur at the critical points and at the endpoints:

f (0) = cos0+
0
2
= 1 =⇒local min

f
�π

6

�

= cos
π

6
+
π/6

2
=

p
3

2
+
π

12
≈ 1.13 =⇒local max

f
�5π

6

�

= cos
5π
6

+
5π/6

2
=−
p

3
2

+
5π
12
≈ 0.4=⇒global min

f (2π) = cos (2π)+
2π
2

= 1+π≈ 4.1 =⇒global max

(c) To find the intervals of increase and decrease, we choose values between each endpoint
and/or critical point, and substitute into the derivative:

f ′ (x) + + 0 - 0 + +
x 0 0.1 π

6 1 5π
6 π 2π

The function is thus increasing on [0,π/6)∪ (5π/6, 2π] and decreasing on (π/6, 5π/6).
(d) The second derivative is f ′′ (x) =−cos x. This is never undefined, so the possible inflection

points occur only when f ′′ (x) = 0; that is, when −cos x = 0; that is, when x = π/2, 3π/2.
(e) To find the intervals of concavity, we choose values between each endpoint and/or critical

point, and substitute into the second derivative:
f ′′ (x) - - 0 + 0 - -

x 0 π
4

π
2 π 3π

2
7π
4 2π

The function is thus concave up on (π/2, 3π/2) and decreasing on [0,π/2)∪ (3π/2, 2π].



(f) There are no vertical asymptotes of f , because we never encounter division by zero. There
are no horizontal asymptotes of f , because lim

x→±∞
f does not converge to any one point.

(g) Different colors in the graph below highlight the information. (You would not need different
colors on the graph.) We found y-values for all points of interest. The (first) black section
of the graph runs from x = 0 to x = π/6 and is increasing and concave down. The (second)
blue section of the graph runs from x = π/6 to x = π/2 and is decreasing and concave down.
The (third) purple section of the graph runs from x = π/2 to x = 5π/6 and is decreasing and
concave up. The (fourth) red section of the graph runs from x = 5π/6 to x = 3π/2 and is
increasing and concave up. The (fifth) orange section of the graph runs from x = 3π/2 to
x = 2π and is increasing and concave down.



1.6. Compute a linear approximation of sin (0.75) by starting at the point x = π/4.

Solution: We are using f (x) = sin x. The linear approximation of the curve uses the line
tangent to the curve at the given point. The x-value we will use is given as x0 = π/4, and the
y-value is y0 = f (x0) = f (π/4) = sin (π/4) =

p
2/2. The slope of this line is the derivative. So,

we need f ′ (x) = cos x and in particular we need f ′ (π/4) = cos (π/4) =
p

2/2. The equation of
the line tangent to f at x = π/2 is thus

y−
p

2
2

=

p
2

2
·
�

x− π
4

�

=⇒ y =

p
2

2
·
�

x + 1− π
4

�

.

So our approximation is

y =

p
2

2
·
�

0.75+ 1− π
4

�

≈ 0.6821 .

In fact, a calculator will tell you that sin (0.75)≈ 0.6816, so the approximation is rather good!



1.7. Use three steps of Newton’s Method to approximate a solution to

x5 + 2x = 1 ,

starting from the initial approximation x0 = 1. Is your final answer accurate to three deci-
mal places? Why or why not?

Solutions: Move every term in the equation to one side, obtaining

x5 + 2x−1 = 0 .

Now we are solving for a root of f (x) = x5+2x−1. Its derivative is f ′ (x) = 5x4+2. Newton’s
Method tells us to iterate with

xnext = xcurr−
f (xcurr)

f ′ (xcurr)
,

or

xi+1 = xi −
f (xi )

f ′ (xi )
.

Hence we have

x0 = 1

x1 = 1−
f (1)
f ′ (1)

= 1− 2
7
≈ 0.714286

x2 = 0.714286−
f (0.714286)
f ′ (0.714286)

= 0.714286− 0.6145068
3.3015431

≈ 0.528159

x3 = 0.528159−
f (0.528159)
f ′ (0.528159)

= 0.528159− 0.0974163
2.3890709

≈ 0.487383 .

This answer is not even accurate to one decimal place, because none of the decimals are repeating!
(Were we to allow it to proceed one or two additional steps, it would in fact start repeating: x4

repeats the first two digits of x3, and x5 repeats the first six digits of x4.)


