## MAT 167 TEST 2 FORM A (DERIVATIVES)

Directions: Solve each required problem on a separate sheet of paper. Use pencil and show all work; I deduct points for using pen or skipping important steps. You must shut off your cell phone. Some problems are worth more than others. Take your time; quality is preferred to quantity. I encourage you to ask questions.

1. Let $f(x)=3 x$.
(a) Use the intuitive or geometric definition of the derivative to explain why $f^{\prime}(x)=3$ at every value of $x$.
The derivative of $f$ at a point is the rate of change of $f$ at that point. The graph of $f$ is a line with slope 3. "Slope" is the rate of change of a line, and is constant. Hence, the derivative is 3 .
(b) Use the precise definition of the derivative to show that $f^{\prime}(x)=3$ at every value of $x$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{3(x+h)-3 x}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 x+3 h-3 x}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 h}{h} \\
& =\lim _{h \rightarrow 0} 3 \\
& =3 .
\end{aligned}
$$

2. Use properties of derivatives to compute the derivatives of the following functions.
(a) $f(x)=x e^{x}$

By the product shortcut, the $m x+b$ shortcut, and the $e^{x}$ shortcut,

$$
f^{\prime}(x)=\left(\frac{d}{d x} x\right) e^{x}+x\left(\frac{d}{d x} e^{x}\right)=1 \cdot e^{x}+x \cdot e^{x}=e^{x}+x e^{x}
$$

(b) $g(x)=x^{2}-3 / x$

By the sum shortcut and the $x^{n}$ shortcut,

$$
g^{\prime}(x)=2 x+\frac{3}{x^{2}} .
$$

(We use the fact that we can rewrite $g(x)=x^{2}-3 x^{-1}$.)
(c) $h(x)=\sin (2 x)-3 \tan x$

By the sum shortcut, the constant multiple shortcut, two trigonometric shortcuts, and the Chain Rule,

$$
h^{\prime}(x)=\underbrace{\cos (2 x)}_{\text {derivative of } \sin } \cdot \underbrace{2}_{\text {derivative of } 2 x}-3 \sec ^{2} x=2 \cos (2 x)-3 \sec ^{2} x .
$$

(d) $G(x)=\frac{(2 x+1)^{3}}{x^{5} e^{x}}$

By the quotient shortcut, the product shortcut, the power shortcut, Chain Rule, and the $m x+b$ shortcut,

$$
\begin{aligned}
G^{\prime}(x) & =\frac{\left[\frac{d}{d x}\left((2 x+1)^{3}\right) \cdot x^{5} e^{x}\right]-\left[(2 x+1)^{3}\left(\frac{d}{d x}\left(x^{5} e^{x}\right)\right)\right]}{\left(x^{5} e^{x}\right)^{2}} \\
& =\frac{\left[\left(3(2 x+1)^{2} \cdot 2\right) \cdot x^{5} e^{x}\right]-\left[(2 x+1)^{3}\left(5 x^{4} e^{x}+x^{5} e^{x}\right)\right]}{x^{10} e^{2 x}} \\
& =\frac{6 x^{5}(2 x+1)^{2} e^{x}-(2 x+1)^{3}\left(5 x^{4} e^{x}+x^{5} e^{x}\right)}{x^{10} e^{2 x}} \\
& =\frac{x^{4} e^{x}\left[6 x(2 x+1)^{2}-(2 x+1)^{3}(5+x)\right]}{x^{10} e^{2 x}} \\
& =\frac{6 x(2 x+1)^{2}-(2 x+1)^{3}(5+x)}{x^{6} e^{x}} .
\end{aligned}
$$

(You can stop at equation (1) on the test.)
3. Use properties of derivatives to prove that $d / d x(\tan x)=\sec ^{2} x$.

By a trigonometric property and the quotient shortcut,

$$
\begin{aligned}
\frac{d}{d x}(\tan x) & =\frac{d}{d x}\left(\frac{\sin x}{\cos x}\right) \\
& =\frac{\left(\frac{d}{d x} \sin x\right) \cos x-\sin x\left(\frac{d}{d x} \cos x\right)}{(\cos x)^{2}} \\
& =\frac{\cos x \cdot \cos x-\sin x(-\sin x)}{\cos ^{2} x} \\
& =\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x} \\
& =\frac{1}{\cos ^{2} x} \\
& =\sec ^{2} x
\end{aligned}
$$

4. Use the graph of $f(x)$ given at right to answer the following questions.
(Each gray line marks a unit of 1.)
(a) At what point(s) is $f$ discontinuous?
$f$ is discontinuous wherever we see a hole, jump, or asymptote. There is one jump in this graph, at $x=-2$. There are no holes or asymptotes.
(b) At what point(s) if $f$ nondifferentiable?
$f$ is nondifferentiable whenever it is not smooth. This graph is not smooth at $x=-2$ (discontinuity) and at $x=2$ (kink).
(c) Sketch a graph of $f^{\prime}(x)$.

We find the graph of $f^{\prime}$ by estimating the slope of the tangent line at various points on the graph. The leftmost line segment has slope 2 , so $f^{\prime}$ has a horizontal line $y=2$ on that interval. The rightmost line segment likewise has slope -2 , so $f^{\prime}$ has a hori-
 zontal line $y=-2$ on that interval. In between, we move from an apparently vertical tangent line at $x=-2$ to an apparently horizontal tangent line at $x=0$, then back to an apparently vertical tangent line at $x=2$.

5. Find the equation of the line tangent to $y=-2(3 x+1)^{2}$ at $x=0$.

We can find any line using the point-slope equation, $y-y_{0}=m\left(x-x_{0}\right)$. We are given that $x_{0}=0$. We can find $y_{0}$ by substitution:

$$
y_{0}=-2(3 \cdot 0+1)^{2}=-2 \times 1=-2 .
$$

The slope $m$ is by definition the derivative of the given function at the given point. The derivative is

$$
y^{\prime}=\underbrace{-2}_{\text {const. mult. }} \cdot \underbrace{2(3 x+1)^{1}}_{\text {power }} \cdot \underbrace{3}_{\text {chain }}
$$

and at $x_{0}=0$ we have

$$
y^{\prime}=-2 \cdot 2(3 \cdot 0+1) \cdot 3=-12 .
$$

Hence the equation of the tangent line is

$$
y-(-2)=-12(x-0),
$$

or in point-slope form,

$$
y=-12 x-2
$$

6. Insolation describes the amount of sunlight an area of land receives at a given moment. It is measured in Langleys, Ly for short. ${ }^{1}$ Suppose the insolation at a given location in Mississippi on a given day is $I=17 \sin (t \cdot \pi / 14)$, where $t$ is the number of hours after 6 am .
(a) Approximately how much insolation is the location receiving at 9am? Use correct units! The insolation is $I=17 \sin (3 \cdot \pi / 14) \approx 10.59933 \mathrm{Ly}$.
(Notice that $t=3$ because $t$ represents the number of hours after 6am, and at 9am we are 3 hours after 6am. Don't use $t=9$; that would be wrong!)
(b) Approximately how fast is the insolation changing at 9am? Use correct units!
"How fast" asks for rate of change, so we need the derivative,

$$
I^{\prime}=\underbrace{17}_{\text {const. mult. }} \cdot \underbrace{\cos \left(t \cdot \frac{\pi}{14}\right)}_{\text {deriv. of sin }} \cdot \underbrace{\frac{\pi}{14}}_{\text {chain }}=\frac{17 \pi}{14} \cos \left(\frac{\pi}{14} t\right) .
$$

At $t=3$,

$$
I^{\prime}(3)=\frac{17 \pi}{14} \cos \left(\frac{\pi}{14} \cdot 3\right) \approx 2.9852 \mathrm{Ly} / \mathrm{hr} .
$$

(Notice that the unit is Langleys per hour, because the derivative is $d y / d x$, and in this case " $y$ " represents Langleys, while " $x$ " represents hours after 9am.)
(c) Is the insolation increasing or decreasing at 9am? Explain your answer.

The insolation is increasing, because $I^{\prime}$ is positive.
7. Bonus. If $f(x)=\cos x$, find $f^{(275)}(x)$. Show your work for full credit.

While I probably would ask a different bonus, I'm not telling the answer here. See me if you want to know.

[^0]
[^0]:    ${ }^{1}$ If you're curious, $1 \mathrm{Ly}=41840 \mathrm{~J} / \mathrm{m}^{2} \approx 11.622 \mathrm{~Wh} / \mathrm{m}^{2}$, but that's not useful to the problem.

