MAT 167 TEST 1 FORM B (LIMITS)

Free-response questions

Directions: These questions must be answered in your blue exam book. You may use a graphing calculator to check your work, but I must see all necessary steps, as well as appropriate explanations when necessary. "Bald answers" receive at most one point.

1. (5 pts each)

Give (a) a precise definition of the statement, " f is continuous at $x=a$, and
You can find the limit off at $x=a$ by substituting a for x. Or, written symbolically, $\lim _{x \rightarrow a} f(x)=f(a)$.
(b) an intuitive or geometric definition of the statement, " $\lim _{x \rightarrow a} f(x)=L$."

As the x-value approaches a from both sides, the y-value of f approaches L.
2. (5 pts each)

Evaluate the following limits, if they exist. If they do not exist, state this. Justify your answers.
(a) $\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}$

$$
\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9} \searrow_{0}^{0} \cdot \frac{\sqrt{x}+3}{\sqrt{x}+3}=\lim _{x \rightarrow 9} \frac{x-9}{(x-9)(\sqrt{x}+3)}=\lim _{x \rightarrow 9} \frac{1}{\sqrt{x}+3}=\frac{1}{\sqrt{9}+3}=\frac{1}{6} .
$$

(b) $\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}$

$$
\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}=\lim _{h \rightarrow 0} \frac{\left(x^{2}+2 x h+h^{2}\right)-x^{2}}{h}=\lim _{h \rightarrow 0} \frac{(2 x+h) h}{h}=\lim _{h \rightarrow 0}(2 x+h)=2 x .
$$

(c) $\lim _{x \rightarrow \infty} \frac{4 x^{3}+5}{2 x^{3}-9}$

$$
\lim _{x \rightarrow \infty} \frac{4 x^{3}+5^{>\infty}}{2 x^{3}-9} \searrow_{ \pm \infty} \cdot \frac{\frac{1}{x^{3}}}{\frac{1}{x^{3}}}=\lim _{x \rightarrow \infty} \frac{4+\frac{5}{x^{3}}}{2-\frac{9}{x^{3}}} \searrow_{\searrow_{2-0}}^{4+0}=\frac{4}{2}=2 .
$$

3. (10 pts each)
(a) Use the Method of Bisection to approximate a root of the function $x^{5}+2 x+1$ on the interval $(-1,0)$ in 3 steps.

We start with $a=-1, b=0, n=3, f(x)=x^{5}+2 x+1$.
Initialize $c=a=-1, d=b=0, i=n=3$.
Let $e=(c+d) / 2=-1 / 2$. By substitution, $f(e)=-1 / 32<0$, so we replace $c=e=$ $-1 / 2$ and decrement i to 2.

Let $e=(c+d) / 2=-1 / 4$. By substitution, $f(e) \approx 0.5>0$, so we replace $d=e=-1 / 4$ and decrement i to 1 .

Let $e=(c+d) / 2=-3 / 8$. By substitution, $f(e) \approx 0.24>0$, so we replace $d=e=-3 / 8$ and decrement i to 0 .

At this point, $i=0$, so the algorithm returns $[c, d]=[-1 / 2,-3 / 8]$.
(b) Explain how we know that we can use the Method of Bisection to approximate a root of the given function.

The function f is a polynomial and thus continuous. If we check $f(a)=-2$ and $f(b)=1$, we see that they have opposite signs. Since 0 lies between the y-values, the Intermediate Value Theorem tells us that a root of f lies between a and b.
4. (Bonus, 10 pts)

Problem 4 asked you to use at most 3 steps. How many steps would it take to guarantee that the answer was accurate to 5 places?

The Method of Bisection guarantees that if you give it an interval $[a, b]$, then the result $[c, d]$ satisfies $|c-d|=|a-b| / 2^{n}$, where n is the number of steps. We want a result accurate to 5 decimal places, so we need $|c-d|<10^{-5}$. In problem 4, $a=0$ and $b=1$, so by substitution,

$$
\frac{|a-b|}{2^{n}}<10^{-5} \quad \Longrightarrow \quad|1-0| \times 10^{5}<2^{n} \quad \Longrightarrow \quad \log _{2} 10^{5}<n \quad \Longrightarrow \quad 17 \leq n
$$

