MAT 167 TEST 1 FORM A (LIMITS)

Directions: Solve each required problem on a separate sheet of paper. Use pencil and show all work; I deduct points for using pen or skipping important steps. You must shut off your cell phone. Some problems are worth more than others. Take your time; quality is preferred to quantity. I encourage you to ask questions.

1. Give (a) an intuitive definition of $\lim _{x \rightarrow a^{-}} f(x)$ (a one-sided limit), and (b) a precise definition of $\lim _{x \rightarrow a} f(x)$ (a two-sided limit).
2. Sketch the graph of a function with all of the given properties. You need not find a formula for the function.

$$
\begin{array}{lccc}
\lim _{x \rightarrow-\infty} f(x)=\infty & f(-2)=3 & f(0) \text { is undefined } & f(2)=-3 \\
\lim _{x \rightarrow \infty} f(x)=3 & \lim _{x \rightarrow-2} f(x)=5 & \lim _{x \rightarrow 0^{-}} f(x)=-\infty & \lim _{x \rightarrow 2^{-}} f(x)=-3 \\
& & \lim _{x \rightarrow 0^{+}} f(x)=-\infty & \lim _{x \rightarrow 2^{+}} f(x)=-2
\end{array}
$$

3. Evaluate the following limits, if they exist. If they do not exist, state this. Justify your answers. One of them will need the Squeeze Theorem.
(a) $\lim _{x \rightarrow 3} \frac{x-3}{x^{2}-9}$
(b) $\lim _{x \rightarrow 0} f(x)$, where
(c) $\lim _{x \rightarrow \infty} \frac{x+1}{x^{2}-9}$
$f(x)= \begin{cases}x^{2}-1, & x<0 \\ 1-x^{2}, & x>0\end{cases}$
(d) $\lim _{x \rightarrow-3} \frac{x-3}{x^{2}+6 x+9}$
(e) $\lim _{x \rightarrow \infty} \frac{\cos x}{x}$
(f) $\lim _{x \rightarrow \infty} \frac{6 x^{2}+x+1}{3 x^{2}+1}$
4. If possible, determine a value of b such that $p(x)$ is continuous at $x=2$. If this is not possible, explain why not.

$$
p(x)= \begin{cases}x+2 & \text { if } x<2 \\ b & \text { if } x=2 \\ x^{2}-2 & \text { if } x>2\end{cases}
$$

5. Use the Intermediate Value Theorem to show that the equation $\cos x-x=0$ has a solution on the interval $\left(0, \frac{\pi}{2}\right)$. Attempt neither to find nor to approximate the solution.
6. True or false? Explain why or why not.
(a) When $\lim _{x \rightarrow a} f(x)$ exists, it always equals $f(a)$.
(b) The line $x=2$ is a vertical asymptote of the function $f(x)=x^{2}+4 / x-2$.
