Derivative shortcuts and anti-shortcuts

October 24, 2019

Shortcuts

these are good

(0) $d / d x(c)=0$
derivative of a constant
(1) $d / d x(m x+b)=m$ when m, b are constant
(2) $d / d x\left(x^{n}\right)=n x^{n-1}$
(3) $d / d x(f \pm g)=f^{\prime} \pm g^{\prime}$
(4) $d / d x(c f)=c f^{\prime}$ when c is constant
(5) $d / d x(\sin x)=\cos x$
(6) $d / d x(\cos x)=-\sin x$
(7) $d / d x(\ln x)=1 / x$
(8) $d / d x\left(e^{x}\right)=e^{x}$
(9) $d / d x(f g)=f^{\prime} \cdot g+f \cdot g^{\prime}$
product rule
(10) $d / d x(f / g)=\left(f^{\prime} \cdot g-f \cdot g^{\prime}\right) / g^{2}$
quotient rule
(11)
other trig functions
(a) $d / d x(\tan x)=\sec ^{2} x$
(b) $d / d x(\cot x)=-\csc ^{2} x$
(c) $d / d x(\sec x)=\sec x \tan x$
(d) $d / d x(\csc x)=-\csc x \cot x$
(12) $d / d x(f \circ g)=\left(f^{\prime} \circ g\right) \cdot g^{\prime}$, or,
$d / d x[f(g(x))]=f^{\prime}(g(x)) \cdot g^{\prime}(x)$, or, $d y / d x=d y / d u \cdot d u / d x$
(13) $d / d x\left(a^{x}\right)=a^{x} \ln a$

Anti-shortcuts

$(-1) d / d x(f g) \neq f^{\prime} \cdot g^{\prime}$
$(-2) d / d x(f / g) \neq f^{\prime} / g^{\prime}$
$(-3) d / d x\left(a^{x}\right) \neq x a^{x-1}$

