Derivative shortcuts and anti-shortcuts

October 24, 2019

Shortcuts		these are good
(0)	$d/dx\left(c\right)=0$	derivative of a constant
(1)	d/dx (mx + b) = m when m, b are constant	derivative of a line
(2)	$\frac{d}{dx}\left(x^{n}\right)=nx^{n-1}$	power rule
(3)	$d/dx (f \pm g) = f' \pm g'$	derivative of a sum
(4)	d/dx(cf) = cf' when <i>c</i> is constant	derivative of a constant multiple
(5)	$\frac{d}{dx}\left(\sin x\right) = \cos x$	
(6)	$\frac{d}{dx}\left(\cos x\right)=-\sin x$	
(7)	$d/dx(\ln x)=1/x$	
(8)	$d/dx\left(e^{x}\right)=e^{x}$	
(9)	$d/dx (fg) = f' \cdot g + f \cdot g'$	product rule
(10)	$d/dx (f/g) = (f' \cdot g - f \cdot g')/g^2$	quotient rule
(11)		other trig functions
	(a) $d/dx (\tan x) = \sec^2 x$ (b) $d/dx (\cot x) = -\csc^2 x$ (c) $d/dx (\sec x) = \sec x \tan x$ (d) $d/dx (\csc x) = -\csc x \cot x$	
(12)	$d/dx (f \circ g) = (f' \circ g) \cdot g', \text{ or,}$ $d/dx [f (g (x))] = f' (g (x)) \cdot g' (x), \text{ or,}$ $dy/dx = dy/du \cdot du/dx$	chain rule
(13)	$d/dx\left(a^{x}\right)=a^{x}\ln a$	

Anti-shortcuts

- (-1) $d/dx(fg) \neq f' \cdot g'$
- (-2) $d/dx (f/g) \neq f'/g'$
- (-3) $d/dx (a^x) \neq x a^{x-1}$

these are bad