
More examples of Related Rates and L’Hôpital’s Rule

December 5, 2019

Related Rates
1. If two triangles are similar, then their sides are proportional, so that in the diagram below, we

have
a

b
=
x

y
. (1)

Suppose that when a = 50m and b = 72m, we know that x = 12m, a is increasing by 10m/s,
b is decreasing by 12m/s, and x is decreasing by 18m/s. If the triangles remain similar at all
times, how is y changing?

Solution: None of the quantities remains constant, so we cannot substitute them yet. We take
the derivative with respect to time, which requires the quotient rule:

da
dt · b − a ·

db
dt

b2
=

dx
dt · y − x ·

dy
dt

y2
.

Now let’s go ahead and substitute the values we know:

10 · 72 − 50 · (−12)
722

=
−18 · y − 12 · dydt

y2
. (2)

(We use −12 and −18 because b and x are decreasing.) It looks as if we are at an impasse,
because we have two unknowns: y and dy/dt . However, from the proportion (1) we know that

50
72
=

12
y

=⇒ 50y = 12 × 72 =⇒ y =
432
25
= 17.28m .
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Substitute this into (2), and we can solve for y:

10 · 72 − 50 · (−12)
722

=
−18 · 17.28 − 12 · dydt

17.282
=⇒

dy

dt
= −32.256 .

Since the value is negative, y is decreasing at a rate of 32.256m/s.

2. A pipe leaking from under ground feeds a circular puddle in the road. If the area is changing
at a constant rate of 5 cm2

/min, at what rate is the circle’s radius increasing when it is 12 cm?
Solution: First we related the quantities, A = πr 2. Neither A nor r is constant, so we cannot
substitute their values yet. We take the derivative with respect to time, which gives us

dA

dt
= π · 2r ·

dr

dt︸︷︷︸
chain

.

Now we substitute the values we know:

5 = π · 2 · 12 ·
dr

dt
.

We solve for dr/dt to �nd that
dr

dt
=

5
24π
≈ 0.07 .

The radius is increasing at 0.07 cm/min.

3. A television camera is positioned 8000 � from the base of a rocket launching pad. The camera’s
angle of elevation must change at the correct rate to keep the rocket in sight. Also, the camera’s
focusing mechanism must take into account the increasing distance from the camera to the
rising rocket. Assume the rocket rises vertically, and its velocity is 900 �/s when its height is
1000 �.

(a) How fast is the distance from the camera to the rocket changing at that moment?
(b) If the camera remains aimed at the rocket, how fast is the camera’s angle of elevation

changing at that moment?

Solution: The diagram below illustrates the situation. We have a right triangle because the
rocket rises vertically.

2



(a) We need merely worry about the distances. Let a be the distance from the camera to the
pad, b the distance from the pad to the rocket, and c the distance from the camera to the
rocket. We can relate these values using the equation

a2 + b2 = c2 .

While a = 8000 is constant, b = 1000 is not, so we can substitute only for a. We have

80002 + b2 = c2 . (3)

Take the derivative with respect to time, which gives us

0 + 2b ·
db

dt
= 2c ·

dc

dt
.

Substitute for the values we know:

2 · 1000 · 900 = 2c ·
dc

dt
. (4)

We want to know dc/dt , but without knowing c we cannot proceed. Fortunately, we know
from equation (3) that

a2 + b2 = c2 =⇒ 80002 + 10002 = c2 =⇒ c ≈ 8062 .

Substituting that into (4),

2 · 1000 · 900 = 2 · 8062 ·
dc

dt
=⇒

dc

dt
≈ 111.6 .

So the distance between the camera and the rocket increases at a rate of roughly 111.6 �/s.
(b) The angle of elevation is the angle at the camera; call it γ (“gamma”). We can relate this

quantity to the others using trigonometry:

tanγ =
b

a
.

While a = 8000 is constant, b = 1000 is not, so we can substitute only for a. We have

tanγ =
b

8000
. (5)

Take the derivative with respect to time, which gives us

sec2 γ ·
dγ

dt
=

1
8000

·
db

dt
.

Substitute for the values we know:

sec2 γ ·
dγ

dt
=

1
8000

· 900 . (6)

That’s not especially helpful; we need to know γ . Fortunately, we know from equation
(5) that

tanγ =
1000
8000

=⇒ γ = tan−1
1
8
≈ 0.12345 .

Substituting that into (6), we have

sec2
(
tan

1
8

)
·
dγ

dt
=

9
80

=⇒
65
64
·
dγ

dt
=

9
80

=⇒
dγ

dt
= 36/326 ≈ 0.11 .

The angle of elevation must increase at a rate of approximately 0.11 radians/second.
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L’Hôpital’s Rule
Evaluate the following limits. (You need to worry about only 1–4 on the �nal, but you may need
5–7 later in life.)

1. lim
x→3+

17 ln (x − 3)
28 (x − 3)

Solution:

lim
x→3+

17 ln (x − 3)
28 (x − 3)

↗−∞

↘0

= −∞ .

Don’t think you have to use L’Hôpital’s Rule just because that’s a recent technique used! You
should use only what applies, and L’Hôpital’s Rule does not apply because the form is neither
0/0 nor ±∞/±∞.

2. lim
x→1

4 lnx
5 tan (πx)

Solution:

lim
x→1

4 lnx
5 tan (πx)

L’H
= lim

x→1

4 · 1x
5 sec2 (πx) · π

↗4

↘5π

=
4
5π
.

3. lim
t→5

t2 − 25
4t2 + 4t − 120

Solution:

lim
t→5

t2 − 25
4t2 + 4t − 120

↗0

↘0

L’H
= lim

t→5

2t
8t + 4

↗10

↘44
=

10
44
=

5
22
.

4. lim
α→0

sin (18α)
sin (12α)

Solution:

lim
α→0

sin (18α)
sin (12α)

↗0

↘0

L’H
= lim

α→0

cos (18α) · 18
cos (12α) · 12

↗18

↘12

=
18
12
=

3
2
.

5. lim
θ→ π

2
+
(secθ − tanθ )

Solution:
lim
θ→ π

2
−
(secθ − tanθ ) → ∞ −∞ .

This is an indeterminate form. We need to rewrite it as one of the two forms that work with
L’Hôpital’s Rule. We can do this by resorting to trigonometric identities and fractions:

lim
θ→ π

2
−
(secθ − tanθ ) = lim

θ→ π
2
−

(
1

cosθ
−

sinθ
cosθ

)
= lim

θ→ π
2
−

(
1 − sinθ
cosθ

)↗0

↘1

= 0 .
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We didn’t even need L’Hôpital’s Rule! It su�ced simply to rewrite the original expression as
fractions.
(Don’t conclude too quickly that∞−∞ = 0, as the next problem shows.)

6. lim
x→1+

(
12
lnx
−

12
x − 1

)
Solution:

lim
x→1

(
12
lnx
−

12
x − 1

)
→∞−∞ .

This is an indeterminate form. We need to rewrite it as one of the two forms that work with
L’Hôpital’s Rule. We can do this by resorting to fractions:

lim
x→1

(
12
lnx
−

12
x − 1

)
= lim

x→1

(
12 (x − 1) − 12 lnx
(x − 1) lnx

)↗0

↘0

L’H
= lim

x→1

12 · 1 − 12 · 1x
1 · lnx + (x − 1) · 1x

↗0

↘0

.

We seem to have ended up with 0/0 again. Let’s simplify a little bit — we have fractions within
fractions, and that’s never pleasant.

lim
x→1

(
12
lnx
−

12
x − 1

)
= lim

x→1

12x − 12
x lnx + (x − 1)

↗0

↘0

.

We still have 0/0. No cause to panic yet; apply L’Hôpital’s Rule a second time.

lim
x→1

(
12
lnx
−

12
x − 1

)
L’H
= lim

x→1

12
1 · lnx + x · 1x + 1

↗12

↘2

=
12
2
= 6 .

7. lim
x→∞

(
1 +

3
x

)2x
Solution: (As an aside, this problem is pretty fundamental to �nance and economics.)

lim
x→∞

(
1 +

3
x

)2x
→ 1∞ .

This is an indeterminate form. We need to rewrite it as one of the two forms that work with
L’Hôpital’s Rule. Since we have a variable in the exponent, we resort to logarithms. Let

y =

(
1 +

3
x

)2x
.

Then

lny = ln
(
1 +

3
x

)2x
= 2x · ln

(
1 +

3
x

)
.

Let’s consider

lim
x→∞
(lny) = lim

x→∞

[
2x · ln

(
1 +

3
x

)]
→∞ · ln (1 + 0) = ∞ · 0 .
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This is also an indeterminate form.1 We need to rewrite it as one of the two forms that work
with L’Hôpital’s Rule. We’ll resort to fractions, moving 2x to the denominator via a reciprocal:

lim
x→∞
(lny) = lim

x→∞

ln
(
1 + 3

x

)
1
2x

↗0

↘0

L’H
= lim

x→∞

1
1+ 3

x
· − 3

x2

− 1
2x2

= lim
x→∞

[
6

(
1

1 + 3
x

)]
→ 6 ·

1
1 + 0

= 6 .

We found a limit! However, it isn’t the limit we originally wanted. We’ve found the limit of
lny; we want the limit of y. Fortunately, it’s easy to convert from lny to y:

lim
x→∞

y = lim
x→∞

e lny = e limx→∞ lny = e6 .

1I can’t remember if I mentioned it in class. If 0 · ∞ is not listed, you should include it in the list of indeterminate
forms that I gave.
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