QUIZ 2 SOLUTIONS

MAT 167

p. 109 \#53(a). Intermediate Value Theorem and related rates. Suppose $\$ 5000$ is invested in a savings account for 10 years (120 monhts), with an annual interest rate of r, compounded monthly. The amount of money in the account after 10 years is $A(r)=5000(1+r / 12)^{120}$. Use the Intermediate Value Theorem to show there is a value of r in $(0,0.08)$ - an interest rate between 0% and 8% - that allows you to reach your savings goal of $\$ 7000$ in 10 years.

$$
A(0)=5000(1+0 / 12)^{120}=5000 \text { and } A(0.08)=5000(1+0.08 / 12)^{120}=11058.20
$$

Since $A(0)<7000<A(0.08), A$ is a polynomial, and polynomials are continuous everywhere, there must be a value of r in $(0,0.08)$ that gives $A(r)=7000$.
p. 109 \#57. (a) Use the Intermediate Value Theorem to show that the equation $x^{3}-5 x^{2}+2 x=$ -1 has a solution on the interval $(-1,5)$.

Let $f(x)$ represent the left-hand side of the equation. Notice that $f(-1)=$ $(-1)^{3}-5(-1)^{2}+2(-1)=-8$ while $f(5)=5^{3}-5\left(5^{2}\right)+2(5)=10$. Since $f(-1)<$ $-1<f(5), f$ is polynomial, and polynomials are continuous everywhere, there must be a value of x in $(-1,5)$ that gives $f(x)=-1$.
(b) Use a graphing utility to find all the solutions to the equation in that interval.

There are in fact three roots: one at 0 , one near 0.43485 , and one near 4.56155 . (c) Illustrate your answers with an appropriate graph.

p. 109 \#79. (a) Sketch the graph of a function that is not continuous at 1 , but is defined at 1. (b) Sketch the graph of a function that is not continuous at 1 , but has a limit at 1 . There is more than one way to answer this question, but one graph can illustrate both:

p. 109 \#97. Classify the discontinuities in $h(x)=x^{3}-4 x^{2}+4 x / x(x-1)$ at the points $x=0$ and $x=1$. See exercises 91-92.

Consider the limits at each point:

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{x^{3}-4 x^{2}+4 x}{x(x-1)} & \rightarrow \frac{\text { nonzero }}{0} \\
\lim _{x \rightarrow 0} \frac{x^{3}-4 x^{2}+4 x}{x(x-1)} & \rightarrow 0
\end{aligned}
$$

The point $x=1$ has an asymptotic discontinuity: if we examine the limits from the left and right, we will obtain some sort of infinity. The point $x=0$ needs further investigation, so we factor, simplify, and try again:

$$
\lim _{x \rightarrow 0} \frac{x(x-2)^{2}}{x(x-1)}=\lim _{x \rightarrow 0} \frac{(x-2)^{2}}{x-1} \rightarrow \frac{4}{-1}=-4 .
$$

As described in the introduction to exercises 91-92, this is a removable discontinuity.
p. 77 \#27. Evaluate the limit.

$$
\lim _{x \rightarrow 1} \frac{5 x^{2}+6 x+1}{8 x-4} \rightarrow \frac{12}{4}=3 .
$$

p. 77 \#33. One-sided limits. Let

$$
f(x)= \begin{cases}x^{2}+1 & \text { if } x<-1 \\ \sqrt{x+1} & \text { if } x \geq-1\end{cases}
$$

Compute the following limits or state that they do not exist.
(a) $\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{-}}\left(x^{2}+1\right)=2$.
(b) $\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow-1^{+}} \sqrt{x+1}=0$.
(c) $\lim _{x \rightarrow-1} f(x)$ does not exist.
p. 77 \#41. Evaluate the limit.

$$
\lim _{x \rightarrow 4} \frac{x^{2}-16}{4-x} \rightarrow \frac{0}{0}=\lim _{x \rightarrow 4} \frac{(x-4)(x+4)}{4-x}=\lim _{x \rightarrow 4} \frac{(x-4)(x+4)}{-(x-4)}=\lim _{x \rightarrow 4} \frac{x+4}{-1} \rightarrow \frac{8}{-1}=-8
$$

p. 77 \#47. Evaluate the limit.

$$
\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9} \rightarrow \frac{0}{0}=\lim _{x \rightarrow 9}\left(\frac{\sqrt{x}-3}{x-9} \cdot \frac{\sqrt{x}+3}{\sqrt{x}+3}\right)=\lim _{x \rightarrow 9} \frac{x-9}{(x-9)(\sqrt{x}+3)}=\lim _{x \rightarrow 9} \frac{1}{\sqrt{x}+3} \rightarrow \frac{1}{6}
$$

p. 77 \#51. Evaluate the limit.

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{\sqrt{16+h}-4}{h} & \rightarrow 0 \\
\lim _{h \rightarrow 0} \frac{\sqrt{16+h}-4}{h} & \rightarrow \lim _{h \rightarrow 0}\left(\frac{\sqrt{16+h}-4}{h} \cdot \frac{\sqrt{16+h}+4}{\sqrt{16+b}+4}\right) \\
& =\lim _{h \rightarrow 0} \frac{(16+h)-16}{h(\sqrt{16+h}+4)} \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{16+h}+4} \\
& \rightarrow \frac{1}{8} \\
& \rightarrow
\end{aligned}
$$

p. 77 \#57. A sine limit by the Squeeze Theorem. It can be shown that $1-x^{2} / 6 \leq \sin x / x \leq 1$, for x near 0 .
(a) Illustrate these inequalities with a graph.

(b) Use these inequalities to find $\lim _{x \rightarrow 0} \sin x / x$.

We are told that

$$
1-\frac{x^{2}}{6} \leq \frac{\sin x}{x} \leq 1
$$

The left-hand function is a polynomial, hence continuous, and we can evaluate the limit by substitution:

$$
\lim _{x \rightarrow 0}\left(1-\frac{x^{2}}{6}\right)=1-\frac{0^{2}}{6}=1
$$

The right-hand function is a constant, so the limit is itself: 1 . The limits at $x=0$ of the left- and right-hand functions are identical. By the Squeeze Theorem,

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

p. 77 \#67. Evaluate the limit, assuming k is constant.

$$
\begin{aligned}
\lim _{w \rightarrow-k} \frac{w^{2}+5 k w+4 k^{2}}{w^{2}+k w} & \rightarrow \frac{0}{0} \\
\lim _{w \rightarrow-k} \frac{w^{2}+5 k w+4 k^{2}}{w^{2}+k w} & =\lim _{w \rightarrow-k} \frac{(w+4 k)(w+k)}{w(w+k)} \\
& =\lim _{w \rightarrow-k} \frac{w+4 k}{w} \\
& \rightarrow \frac{3 k}{w}=-3 . \\
& \rightarrow \frac{1}{-k}
\end{aligned}
$$

p. 77 \#71. Calculate the limit using the factorization formula

$$
x^{n}-a^{n}=(x-a)\left(x^{n-1}+x^{n-2} a+x^{n-3} a^{2}+\cdots+x a^{n-2}+a^{n-1}\right),
$$

where n is a positive integer and a is a real number.

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{x^{6}-1}{x-1} & \rightarrow \frac{0}{0} \\
\lim _{x \rightarrow 1} \frac{x^{6}-1}{x-1} & =\lim _{x \rightarrow 1} \frac{(x-1)\left(x^{5}+x^{4}+x^{3}+x^{2}+x+1\right)}{x-1} \\
& =\lim _{x \rightarrow 1}\left(x^{5}+x^{4}+x^{3}+x^{2}+x+1\right) \\
& =6 .
\end{aligned}
$$

