REVIEW 2 SOLUTIONS, PART 2

MAT 167
p. 167 \#29. Derivatives of other trigonometric functions Verify the derivative formula $\frac{d}{d x}(\cot x)=-\csc ^{2} x$ using the Quotient Rule.

Recall from trigonometry that $\cot x=\cos x / \sin x$. This has the form of a quotient, so

$$
\begin{aligned}
\frac{d}{d x}(\cot x)=\frac{d}{d x}\left(\frac{\cos x}{\sin x}\right) & =\frac{\left(\frac{d}{d x} \cos x\right) \cdot \sin x-\cos x \cdot\left(\frac{d}{d x} \sin x\right)}{\sin ^{2} x} \\
& =\frac{(-\sin x) \cdot \sin x-\cos x \cdot(\cos x)}{\sin ^{2} x} \\
& =\frac{-\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x} \\
& =-\frac{\sin ^{2} x+\cos ^{2} x}{\sin ^{2} x}
\end{aligned}
$$

Now recall from trigonometry the "Pythagorean identity," $\sin ^{2} x+\cos ^{2} x=1$. We can rewrite the above as

$$
\frac{d}{d x}(\cot x)=-\frac{1}{\sin ^{2} x}=-\csc ^{2} x
$$

p. 167 \#63. Equations of tangent lines

(a) Find the equation of the line tangent to the curve $y=1+2 \sin x$ at $x=\pi / 6$.

The equation of a line is $y-y_{0}=m\left(x-x_{0}\right)$. We know $x_{0}=\pi / 6$, so $y_{0}=1+$ $2 \sin (\pi / 6)=1+2 \cdot 1 / 2=2$. The slope of the tangent line is the derivative, so we need to compute

$$
y^{\prime}=0+2 \cdot \cos x
$$

at $x=\pi / 6$ we have $y^{\prime}=2 \cdot \sqrt{3} / 2=\sqrt{3}$. Hence the tangent line is

$$
y-2=\sqrt{3}\left(x-\frac{\pi}{6}\right) .
$$

(The book's answer is correct, but an abomination to avoid writing.)
(b) Use a graphing utility to plot the curve and the tangent line.
(omitted)
p. 167 \#69. Velocity of an oscillator An object oscillates along a vertical line...
(a) Graph the position function, for $0 \leq t \leq 10$.
(omitted)
(b) Find the velocity of the oscillator, $v(t)=y^{\prime}(t)$.

Since $y(t)=30(\sin t-1)$, we must have $v(t)=y^{\prime}(t)=30(\cos t-0)=30 \cos t$.
(c) Graph the velocity function, for $0 \leq t \leq 10$.
(omitted)
(d) At what times and positions is the velocity zero?

The velocity is zero when $0=30 \cos t$, or $0=\cos t$, or $t=\pi / 2+\pi k$ for any $k \in \mathbb{Z}$ (that is, "for any integer k "). The positions at these times are

$$
\begin{aligned}
30\left(\sin \frac{\pi}{2}-1\right) & =0 \\
30\left(\sin \frac{3 \pi}{2}-1\right) & =-60 \\
30\left(\sin \frac{5 \pi}{2}-1\right) & =0 \\
30\left(\sin \frac{7 \pi}{2}-1\right) & =-60
\end{aligned}
$$

and so forth. (All positions are in centimeters; all times are in second.)
(e) At what times and positions is the velocity a maximum?

If we look at the graph of the velocity function, we see that velocity is a maximum when $t=\pi k$ for any $k \in \mathbb{Z}$. The positions at these times are

$$
\begin{aligned}
30(\sin 0-1) & =-30, \\
30(\sin \pi-1) & =-30, \\
30(\sin 2 \pi-1) & =-30, \\
30(\sin 3 \pi-1) & =-30,
\end{aligned}
$$

and so forth. (All positions are in centimeters; all times are in seconds.)
(f) The acceleration of the oscillator is $a(t)=v^{\prime}(t)$. Find and graph the acceleration function.
Since $v(t)=30 \cos t$, we must have $a(t)=v^{\prime}(t)=30(-\sin t)=-30 \sin t$. (Graph omitted.)
p. 187 \#13. Version 1 of the Chain Rule Use Version 1 of the Chain Rule to calculate $d y / d x$ for $y=\sqrt{x^{2}+1}$.

Version 1 of the Chain Rule is in Leibniz notation,

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x} .
$$

In our problem, $y=\sqrt{u}=u^{1 / 2}$ where $u=x^{2}+1$. So

$$
\frac{d y}{d x}=\underbrace{\frac{1}{2} u^{-\frac{1}{2}}}_{\frac{d y}{d u}} \cdot \underbrace{2 x}_{\frac{d u}{d x}}=u^{-\frac{1}{2}} \cdot x=\underbrace{\left(x^{2}+1\right)^{-\frac{1}{2}} \cdot x}_{\text {I am happy here }}=\frac{x}{\sqrt{x^{2}+1}} .
$$

As far as I'm concerned, you may also use Version 2 of the Chain Rule to solve this.
p. 187 \#35. Similar-looking composite functions Two composite functions are given that look similar, but in fact are quite different. Identify the inner function $u=g(x)$ and the outer function $y=f(u)$; then evaluate $d y / d x$ using the Chain Rule.
(a) $y=\cos ^{3} x$

This actually means $y=(\cos x)^{3}$, so $u=\cos x$ and $y=u^{3}$. The Chain Rule tells us that

$$
\frac{d y}{d x}=\underbrace{3 u^{2}}_{\frac{d y}{d u}} \cdot \underbrace{(-\sin x)}_{\frac{d u}{d x}}=\underbrace{-3(\cos x)^{2} \sin x}_{\text {I am happy here }}=-3 \sin x \cos ^{2} x .
$$

(b) $y=\cos x^{3}$

This actually means $y=\cos \left(x^{3}\right)$, so $u=x^{3}$ and $y=\cos u$. The Chain Rule tells us that

$$
\frac{d y}{d x}=\underbrace{-\sin u}_{\frac{d y}{d u}} \cdot \underbrace{3 x^{2}}_{\frac{d u}{d x}}=-3 x^{2} \sin \left(x^{3}\right) .
$$

p. 187 \#37. Chain Rule using a table Let $h(x)=f(g(x))$ and $p(x)=g(f(x))$. Use the table (omitted) to compute the following derivatives.
(a) $h^{\prime}(3)=f^{\prime}(g(3)) \cdot g^{\prime}(3)=f^{\prime}(1) \cdot 20=5 \cdot 20=100$
(b) $b^{\prime}(2)=f^{\prime}(g(2)) \cdot g^{\prime}(2)=f^{\prime}(5) \cdot 10=-10 \cdot 10=-100$
(c) $p^{\prime}(4)=g^{\prime}(f(4)) \cdot f^{\prime}(4)=g^{\prime}(1) \cdot(-8)=2 \cdot(-8)=-16$
(d) $p^{\prime}(2)=g^{\prime}(f(2)) \cdot f^{\prime}(2)=g^{\prime}(3) \cdot 2=20 \cdot 2=40$
(e) $h^{\prime}(5)=f^{\prime}(g(5)) \cdot g^{\prime}(5)=f^{\prime}(2) \cdot 20=2 \cdot 20=40$
p. 187 \#55. Combining Rules Use the Chain Rule combined with other differentiation rules to find the derivative of $y=\left(\frac{x}{x+1}\right)^{5}$.

The inside is $u=x / x+1$, and the outside is $y=u^{5}$, so

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}=\underbrace{5 u^{4}}_{\text {power }} \cdot \underbrace{\frac{1 \cdot(x+1)-x \cdot(1+0)}{(x+1)^{2}}}_{\text {quotient }}=\underbrace{5\left(\frac{x}{x+1}\right)^{4} \cdot \frac{1}{(x+1)^{2}}}_{\text {I am happy here }}=\frac{5 x^{4}}{(x+1)^{6}} .
$$

p. 187 \#82. Vibrations of a spring Suppose an object of mass $m \ldots$
(a) Find $d y / d t$, the velocity of the mass. Assume k and m are constant.

For the function $y=y_{0} \cos (t \sqrt{k / m})$, the inside is $u=t \sqrt{k / m}$, and the outside is $y=y_{0} \cos u$, so

$$
\frac{d y}{d t}=\frac{d y}{d u} \cdot \frac{d u}{d t}=y_{0}(-\sin u) \cdot\left(1 \cdot \sqrt{\frac{k}{m}}\right)=-\left(y_{0} \sqrt{\frac{k}{m}}\right) \sin \left(t \sqrt{\frac{k}{m}}\right)
$$

(b) How would the velocity be affected if the experiment were repeated with four times the mass on the end of the spring?

We need to replace m by $4 m$. In this case, the oscillation is halved in frequency and in distance, because

$$
\sqrt{\frac{k}{4 m}}=\frac{1}{2} \cdot \sqrt{\frac{k}{m}}
$$

(c) How would the velocity be affected if the experiment were repeated with a spring having four times the stiffness (k is increased by a factor of 4)?
We need to replace k by $4 k$. In this case, the oscillation is doubled in frequency and in distance, because

$$
\sqrt{\frac{4 k}{m}}=2 \sqrt{\frac{k}{m}}
$$

(d) Assume that y has units of meters, t has units of seconds, m has units of kg , and k has units of $\mathrm{kg} / \mathrm{s}^{2}$. Show that the units of the velocity in part (a) are consistent. The units for velocity should be m / s. If we look at what the derivative gave us, we have
$y_{0} \sqrt{\frac{k}{m}} \rightarrow \mathrm{~m} \cdot \sqrt{\frac{\mathrm{~kg} / \mathrm{s}^{2}}{\mathrm{~kg}}}=\mathrm{m} \cdot \sqrt{\frac{\mathrm{k} / \mathrm{s}^{2}}{\mathrm{~kg}}}=\mathrm{m} \cdot \sqrt{\frac{1}{\mathrm{~s}^{2}}}=\mathrm{m} \cdot \frac{1}{\mathrm{~s}}=\mathrm{m} / \mathrm{s}$.
p. 187 \#83. Vibrations of a spring Suppose an object of mass $m \ldots$
(a) Find the second derivative $d^{2} y / d t^{2}$.

This is the derivative of the first derivative, which we found in part (a) of \#82. For the function

$$
v=-\left(y_{0} \sqrt{\frac{k}{m}}\right) \sin \left(t \sqrt{\frac{k}{m}}\right)
$$

the inside is $u=t \sqrt{k / m}$, and the outside is $v=-y_{0} \sqrt{k / m} \sin u$, so

$$
v^{\prime}=\frac{d v}{d t}=\frac{d v}{d u} \cdot \frac{d u}{d t}=-y_{0} \sqrt{\frac{k}{m}} \cdot \cos (u) \cdot\left(1 \cdot \sqrt{\frac{k}{m}}\right)=-\frac{y_{0} k}{m} \cos \left(t \sqrt{\frac{k}{m}}\right) .
$$

(b) Verify that $d^{2} y / d t^{2}=-(k / m) y$.

We saw in part (a) that

$$
\frac{d^{2} y}{d t^{2}}=v^{\prime}=-\frac{y_{0} k}{m} \cos \left(t \sqrt{\frac{k}{m}}\right)
$$

We are given in the problem that $y=y_{0} \cos (t \sqrt{k / m})$. Examining how this appears in the line above, we see indeed that

$$
\frac{d^{2} y}{d t^{2}}=-\frac{k}{m} \cdot k \cos \left(t \sqrt{\frac{k}{m}}\right)=-\frac{k}{m} \cdot y
$$

