REVIEW 2 SOLUTIONS, PART 2

MAT 167

p. 167 #29. Derivatives of other trigonometric functions Verify the derivative formula e (cotx)=—csc’ x
x
using the Quotient Rule.

Recall from trigonometry that cot x = os*/sinx. This has the form of a quotient, so
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Now recall from trigonometry the “Pythagorean identity,” sin® x 4 cos>x = 1. We
can rewrite the above as
d 1 5
—— (cotx) = ———— = —csc” x.
dx sin” x

p- 167 #63. Equations of tangent lines
(a) Find the equation of the line tangent to the curve y = 14 2sinx at x = 7/e.
The equation of a line is y — y, = m (x — x,). We know x, = 7/, so y, = 1+
2sin(7/6) = 1+ 2-1/2= 2. The slope of the tangent line is the derivative, so we
need to compute
y' =0+2-cosx ;

at x = 7/6 we have y’ = 2-v3/2 = 4/3. Hence the tangent line is
y—2= \/§<x — %) .

(The book’s answer is correct, but an abomination to avoid writing.)

(b) Use a graphing utility to plot the curve and the tangent line.
(omitted)

p. 167 #69. Velocity of an oscillator An object oscillates along a vertical line...
(@) Graph the position function, for 0 < ¢ < 10.
(omitted)
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(b) Find the velocity of the oscillator, v () =y’ (¢).
Since y (t) = 30(sint — 1), we must have v (t) =y’(t) = 30(cost —0) = 30cost.
(¢) Graph the velocity function, for 0 < ¢ < 10.
(omitted)
(d) At what times and positions is the velocity zero?
The velocity is zero when 0 = 30cost, or 0 = cost, or t = 7/2+ mk for any
k € Z (that is, “for any integer £”). The positions at these times are

3o<sinz —1> —0,
2

and so forth. (All positions are in centimeters; all times are in second.)

(e) At what times and positions is the velocity a maximum?
If we look at the graph of the velocity function, we see that velocity is a maxi-
mum when ¢ = 7k for any k € Z. The positions at these times are

30(sin0—1) =—30,
30(sin 7t —1) =—30,
30(sin27t—1) =—30,
30(sin37w—1)=—-30,

and so forth. (All positions are in centimeters; all times are in seconds.)
(f) Theacceleration of the oscillator isa (¢) = v’ (¢ ). Find and graph the acceleration

function.
Since v (t) = 30cost, we must have a(t) = v’(t) = 30(—sint) = —30sin .
(Graph omitted.)

p. 187 #13. Version 1 of the Chain Rule Use Version 1 of the Chain Rule to calculate 47/dx for
y=+x2+1.

Version 1 of the Chain Rule is in Leibniz notation,

dy _dy du
dx du dx’
In our problem, y = /% = u'* where n = x>+ 1. So

Nl =

d_yzluf% 2x :%7%-x:(x2—|—1>_ X = *
dx 2 = — S Jx24+1

4y ax T'am happy here

du




p. 187 #35.

p. 187 #37.

p. 187 #55.

dy

dx

p. 187 #82.

As far as ’'m concerned, you may also use Version 2 of the Chain Rule to solve this.
Similar-looking composite functions Two composite functions are given that look
similar, but in fact are quite different. Identify the inner function # = g (x) and the
outer function y = f (#); then evaluate 47/dx using the Chain Rule.

(a) y=cos’x

This actually means y = (cosx)’, so # = cosx and y = #>. The Chain Rule tells

us that
—— =3u" -(—sinx) =—3(cosx) sinx = —3 sin x cos” X.
dx e N——
= i% I am happy here
(b) y =cosx’
This actually means y = cos (x3 ), so # = x> and y = cos #. The Chain Rule tells
us that
dy 2 2 (3
— =—sinu-3x" =—3x sm(x )
dx
dy du
dn dx

Chain Rule using a table Let 5 (x) = f (g (x)) and p(x) = g (f (x)). Use the table

(omitted) to compute the following derivatives.

@ A(3)=/"(g(3) g (3)=/"(1)-20=5-20=100

):
b) #'(2)=/"(¢(2) ¢ (2)=/(5) 10——10 10 =—100
© pl()=g (/(4): f H=g'(1)-(-8)=2-(-8)=—16
d p'(2=g (f( )) f(2)=¢/(3)-2=20-2=40
© H(G)=/"(5(5) ¢ (5)=/"(2)-20=2-20=40
Combmmg Rules Use the Chain Rule combined with other differentiation rules to

5
find the derivative of y = < = > .

x+1
The inside is # = */x+1, and the outside is y = #°, so
_dy du _ ., 1-(x+1)—x-(1+0)_5< x >4 r 5xt
du dx \( (x + 1) x+1/) (x4+172 (x+1)°
quotient I am happy here

Vibrations of a spring Suppose an object of mass m...
(a) Find 97/d¢, the velocity of the mass. Assume k and m are constant.

For the function y =y, cos <t v k/m), the inside is # = t 4/*/m, and the outside is

Y =, C0S #, SO

dy _dy du . k k\ . k
arer _ . (— d1al B2 == ~ ~
dt  du dt Yo(—sinu) m Yo m st m

(b) How would the velocity be affected if the experiment were repeated with four
times the mass on the end of the spring?



We need to replace m by 4m. In this case, the oscillation is halved in frequency
and 1n distance, because

JE Lk
4m 2 m

(¢c) How would the velocity be affected if the experiment were repeated with a spring
having four times the stiffness (k is increased by a factor of 4)?
We need to replace k by 4k. In this case, the oscillation is doubled in frequency
and 1n distance, because

m m

(d) Assume that y has units of meters, ¢ has units of seconds, 7 has units of kg, and
k has units of kg/s?. Show that the units of the velocity in part (a) are consistent.
The units for velocity should be m/s. If we look at what the derivative gave us,
we have

k kgf2 Kl [

p. 187 #83. Vibrations of a spring Suppose an object of mass m...
(a) Find the second derivative #°7/d:2.
This is the derivative of the first derivative, which we found in part (a) of #82.
For the function

k\ . k
’U:_yozsmt%’

the inside is # = £ 4/*/m, and the outside is v = —yy4/*¥/msin u, so

@’_d_@—d_v.d_%—_ é.cos(u)- 1. é ——yo—kcos t é
dt du dt Yo m m|  m m

(b) Verify that /a2 = —(*/m)y.
We saw in part (a) that

dy Yk k

—— =V =———COoSs| t\| —
dt? m m

We are given in the problem that y = y,cos (t V*/ m) Examining how this ap-
pears in the line above, we see indeed that
d?y k k k

—— =——-kcos| t\|— | =—— .
dt? m m m )



