QUIZ 3 SOLUTIONS

MAT 167

p. 86 \#9. Analyzing infinite limits graphically. The graph of f in the figure [not shown here] has vertical asymptotes at $x=1$ and $x=2$. Analyze the following limits:
(a) $\lim _{x \rightarrow 1^{-}} f(x)=\infty$
(b) $\lim _{x \rightarrow 1^{+}} f(x)=\infty$
(c) $\lim _{x \rightarrow 1} f(x)=\infty$
(d) $\lim _{x \rightarrow 2^{-}} f(x)=\infty$
(e) $\lim _{x \rightarrow 2^{+}} f(x)=-\infty$
(f) $\lim _{x \rightarrow 2} f(x)$ does not exist
p. 86 \#41. Explain why or why not. Determine whether the following statements are true or false and give an explanation or counterexample.
(a) The line $x=1$ is a vertical asymptote of the function $f(x)=x^{2}-7 x+6 / x^{2}-1$. False. The limit of the denominator approaches 0 , and the limit of the numerator does, as well. When we encounter $\%$, there is more work to be done; factor the numerator as $(x-1)(x+6)$ and the limit becomes

$$
\lim _{x \rightarrow 1} \frac{(x-1)(x+6)}{x-1}=\lim _{x \rightarrow 1}(x+6)=7
$$

The limit exists and is finite, so it is not an asymptote.
(b) The line $x=-1$ is a vertical asymptote of the function $f(x)=x^{2}-7 x+6 / x^{2}-1$. True. The limit of the denominator approaches 0 , while the limit of the numerator approaches a nonzero value: 14 , to be precise. When we encounter nonzero/0, the limit from the left or the right is some sort of infinity. We don't really care which one here; it suffices to show there is a vertical asymptote at $x=1$.
(c) If g has a vertical asymptote at $x=1$ and $\lim _{x \rightarrow 1^{+}} g(x)=\infty$, then $\lim _{x \rightarrow 1^{-}} g(x)=\infty$. False. The left-hand limit could be $-\infty$, or could even be a finite number. Knowing the right-hand limit is infinite is all we need for an asymptote. To be absolutely clear, the function $g(x)=1 / x-1$ would serve as an example: the right-sided limit is ∞ while the left-sided limit is $-\infty$.
p. 86 \#53. Limits with a parameter. Let $f(x)=\frac{x^{2}-7 x+12}{x-a}$.
(a) For what values of a, if any, does $\lim _{x \rightarrow a^{+}} f(x)$ equal a finite number? The denominator approaches 0 , so the only way to have a finite limit is if the numerator also approaches 0 . The numerator factors as $(x-4)(x-3)$, so it approaches 0 only if $x=4$ or $x=3$. The only possible values of $x=a$ that have a finite limit are thus $x=3$ and $x=4$; if we actually try them out, we
see that
$\lim _{x \rightarrow 3^{+}} \frac{x^{2}-7 x+12}{x-3}=\lim _{x \rightarrow 3^{+}} \frac{(x-3)(x-4)}{x-3}=\lim _{x \rightarrow 3^{+}}(x-4)=-1$
and
$\lim _{x \rightarrow 4^{+}} \frac{x^{2}-7 x+12}{x-4}=\lim _{x \rightarrow 4^{+}} \frac{(x-3)(x-4)}{x-4}=\lim _{x \rightarrow 4^{+}}(x-3)=1$,
confirming our reasoning.
(b) For what values of a, if any, does $\lim _{x \rightarrow a^{+}} f(x)$ equal ∞ ?

The denominator approaches 0 , so to have an infinite limit of some sort, we merely need the numerator to approach a nonzero value: for that, any $a \neq 3,4$ will do. However, we want positive infinity, so we have to be a little more careful. When x approaches a from the right, the x-values are larger than a. So the denominator will always be positive. To have a limit of positive infinity, the numerator's values must also be positive.

- This is true when $x>4$, as the factorization $(x-3)(x-4)$ becomes $(+) \cdot(+)$.
- This is also true when $x<3$, as the factorization becomes $(-) \cdot(-)$.
- This is false when $3<x<4$, as the factorization becomes $(+) \cdot(-)$.

So the values of a for which the limit is ∞ are those in the interval $(-\infty, 3) \cup$ $(4, \infty)$.
(c) For what values of a, if any, does $\lim _{x \rightarrow a^{+}} f(x)$ equal $-\infty$?

We've basically answered this in part (b); the values for a for which the limit is $-\infty$ are those in the interval $(3,4)$.
p. 98 \# $9 . \quad$ Evaluate the limit.

$$
\lim _{x \rightarrow \infty}\left(3+\frac{10}{x^{2}}\right) \rightarrow 3+10 \cdot 0=3 .
$$

p. 98 \#13. Evaluate the limit.

We need to squeeze this function. We know that

$$
-1 \leq \cos (\text { anything }) \leq 1
$$

If that's true for anything, it's certainly true for x^{5}, so

$$
-1 \leq \cos x^{5} \leq 1
$$

We care about $\cos x^{5} / \sqrt{x}$, so let's multiply all three sides by $1 / \sqrt{x}$ to obtain the desired function in the middle:

$$
-\frac{1}{\sqrt{x}} \leq \frac{\cos x^{5}}{\sqrt{x}} \leq \frac{1}{\sqrt{x}}
$$

Recall that $\sqrt{x}=x^{1 / 2}$. We pointed out in class that $1 / x^{p} \rightarrow 0$ as $x \rightarrow \infty$ so long as $p>0$. In this problem, $p=1 / 2$, so certainly $1 / 2>0$. So the left- and right-hand
sides of the inequality approach 0 . By the Squeeze Theorem, the "middle side" must also approach 0 . Hence

$$
\lim _{x \rightarrow \infty} \frac{\cos x^{5}}{\sqrt{x}} \rightarrow 0
$$

p. 98 \#27. Evaluate $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$. Then give the horizontal asymptote of f (if any).

$$
\lim _{x \rightarrow \infty} \frac{6 x^{2}-9 x+8}{3 x^{2}+2} \rightarrow \frac{\infty}{\infty}=\lim _{x \rightarrow \infty} \frac{6 x^{2}-9 x+8}{3 x^{2}+2} \cdot \frac{1 / x^{2}}{1 / x^{2}}=\lim _{x \rightarrow \infty} \frac{6-9 / x+8 / x^{2}}{3+2 / x^{2}} \rightarrow \frac{6-0+0}{3+0}=2
$$

The other limit is the same. There is a horizontal asymptote at $y=2$.
p. 98 \#29. Evaluate $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$. Then give the horizontal asymptote of f (if any).

$$
\lim _{x \rightarrow \infty} \frac{3 x^{3}-7}{x^{4}+5 x^{2}} \rightarrow \frac{\infty}{\infty}=\lim _{x \rightarrow \infty} \frac{3 x^{3}-7}{x^{4}+5 x^{2}} \cdot \frac{1 / x^{4}}{1 / x^{4}}=\lim _{x \rightarrow \infty} \frac{3 / x-7 / x^{4}}{1+5 / x^{2}} \rightarrow \frac{0-0}{1+0}=0 .
$$

The other limit is the same. There is a horizontal asymptote at $y=0$.
p. 98 \#53. (a) Evaluate $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$, and then identify any horizontal asymptotes.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{2 x^{3}+10 x^{2}+12 x}{x^{3}+2 x^{2}} & \rightarrow \infty \\
& \rightarrow \infty \\
& =\lim _{x \rightarrow \infty} \frac{2 x^{3}+10 x^{2}+12 x}{x^{3}+2 x^{2}} \cdot \frac{1 / x^{3}}{1 / x^{3}} \\
& =\lim _{x \rightarrow \infty} \frac{2+10 / x+12 / x^{2}}{1+2 / x} \\
& \rightarrow 2+0+0 \\
& \rightarrow \frac{2}{1+0} \\
& =2 .
\end{aligned}
$$

The other limit is the same. There is a horizontal asymptote at $y=2$.
(b) Find the vertical asymptotes. For each vertical asymptote $x=a$, evaluate $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$.

We first look for division by zero. Set the denominator to zero:

$$
x^{3}+2 x^{2}=0 \Rightarrow x^{2}(x+2)=0 \Rightarrow x=0,-2
$$

For a vertical asymptote, the numerator must approach a nonzero value, possibly after reduction. When $x=-2$, we have

$$
\begin{aligned}
\lim _{x \rightarrow-2^{+}} \frac{2 x^{3}+10 x^{2}+12 x}{x^{3}+2 x^{2}} & \rightarrow 0 \\
& \rightarrow 0 \\
& =\lim _{x \rightarrow-2^{+}} \frac{2 x(x+2)(x+3)}{x^{2}(x+2)} \\
& =\lim _{x \rightarrow-2^{+}} \frac{2(x+3)}{x} \\
& \rightarrow \frac{-4}{4}=-1 \neq \pm \infty .
\end{aligned}
$$

The left-hand limit is the same. When $x=0$, we have

$$
\lim _{x \rightarrow 0^{+}} \frac{2 x^{3}+10 x^{2}+12 x}{x^{3}+2 x^{2}} \rightarrow \frac{0}{0}=\lim _{x \rightarrow 0^{+}} \frac{2(x+3)}{x} \rightarrow \frac{6}{0^{+}} \rightarrow \infty
$$

and

$$
\lim _{x \rightarrow 0^{-}} \frac{2 x^{3}+10 x^{2}+12 x}{x^{3}+2 x^{2}} \rightarrow \frac{0}{0}=\lim _{x \rightarrow 0^{-}} \frac{2(x+3)}{x} \rightarrow \frac{6}{0^{-}} \rightarrow-\infty .
$$

So there is only one vertical asymptote, and it occurs at $x=0$.
p. $98 \# 71$. Steady states. If a function f represents a system that varies in time, the existence of $\lim _{x \rightarrow \infty} f(x)$ means that the system reaches a steady state (or equilibrium). For the population of a culture of tumor cells given by $p(t)=3500 / t+1$, determine if a steady-state exists and give the steady-state value.

To decide the question, we must evaluate the limit:

$$
\lim _{x \rightarrow \infty} \frac{3500}{t+1} \rightarrow \frac{3500}{\infty}=0
$$

So yes, there is a steady state at population 0 , when all the cells die.
p. 98 \#77. Looking ahead to sequences. A sequence is an infinite, ordered list of numbers that is often defined by a function. ...The limit of such a sequence is $\lim _{n \rightarrow \infty} f(n)$, provided the limit exists. Find the limit of the sequence $\{0,1 / 2,2 / 3,3 / 4, \ldots\}$, which is defined by $f(n)={ }^{n-1} / n$, or state that the limit does not exist.

Evaluating the limit, we find that

$$
\lim _{n \rightarrow \infty} \frac{n-1}{n} \rightarrow \frac{\infty}{\infty}=\lim _{n \rightarrow \infty} \frac{n-1}{n} \cdot \frac{1 / n}{1 / n}=\lim _{n \rightarrow \infty} \frac{1-\frac{1}{n}}{1} \rightarrow \frac{1}{1}=1
$$

The limit exists, and is 1 .

