MAT 167 TEST 2 SOLUTIONS

1. FROM FORM A

3. For each function or equation, compute the derivative.

(a)
$$y = 10\cos x - 2\arctan x$$
 (b) $G(y) = \left(\frac{y^2}{y+1}\right)^4$
(c) $g(u) = \sqrt{11(u^2+1)}$ (d) $p(x) = x\ln x$
(e) $x^2 + y^2 = (2x^2 + 2y^2 - x)^2$

Solutions:

- (a) $y' = -10\sin x \frac{2}{1+x^2}$
- (b) Observe that G is a composition of functions; in particular, $G(u) = u^4$ where $u = \frac{y^2}{y+1}$. By the Chain Rule, $G'(y) = G'(u) \cdot u'$.
 - To compute G'(u), use the Power Rule and $G'(u) = 4u^3$.
 - To compute u', use the Quotient Rule and

$$u' = \frac{2y \cdot (y+1) - y^2 \cdot 1}{(y+1)^2} = \frac{y^2 + 2y}{(y+1)^2}$$

• Thus

$$G'(y) = \left[4\left(\frac{y^2}{y+1}\right)^3\right] \cdot \frac{y^2 + 2y}{(y+1)^2}.$$

Remark. We do *not* need implicit differentiation here. G is a function of y, so the derivative is with respect to y, not with respect to x. Thus $\frac{dy}{dx}$ does not need to appear in the derivative.

- (c) Observe that g is a composition of functions; in particular, $g(v) = \sqrt{11v}$ where $v = u^2 + 1$. (There are other ways to describe this composition.) By the Chain Rule, $g'(u) = g'(v) \cdot v'$.
 - To compute g'(v), notice that g(v) contains a constant multiple: $g(v) = \sqrt{11} \cdot \sqrt{v}$. So use the Power Rule *and* the Constant Multiple Rule and $g'(v) = \sqrt{11} \cdot \frac{1}{2}v^{-\frac{1}{2}} = \frac{\sqrt{11}}{2\sqrt{v}}$.
 - To compute v', use the Sum Rule, the Power Rule, and the Constant Rule and v' = 2u.
 - Thus

$$g'(u) = \frac{\sqrt{11}}{2\sqrt{u^2+1}} \cdot 2u.$$

Remark. Notice that if u is already used and you need to identify a composition, you can always use another variable.

- (d) To compute p'(x), use the Product Rule and $p'(x) = 1 \cdot \ln x + x \cdot \frac{1}{x} = \ln x + 1$.
- (e) To compute y', we need implicit differentiation. (Here y depends on x.) So

$$\frac{d}{dx} \left[x^2 + y^2 = \left(2x^2 + 2y^2 - x \right)^2 \right]$$

Right-hand side: Chain Rule!
Let $u = 2x^2 + 2y^2 - x$;
then $u' = 4x + 4y \cdot y' - 1$.
 $2x + 2y \cdot y' = 2 \left(2x^2 + 2y^2 - x \right) \cdot (4x + 4y \cdot y' - 1)$
 $2x + 2y \cdot y' = 16x^3 + 16x^2y \cdot y' - 4x^2$
 $+ 16xy^2 + 16y^3 \cdot y' - 4y^2$
 $- 8x^2 - 8xy \cdot y' + 2x$
 $2x + 2y \cdot y' = \left(16x^3 + 16xy^2 - 12x^2 - 4y^2 + 2x \right)$
 $+ \left(16x^2y + 16y^3 - 8xy \right) \cdot y'$
 $- \left(16x^2y + 16y^3 - 8xy \right) \left] \cdot y' = \left(16x^3 + 16xy^2 - 12x^2 - 4y^2 + 2x \right) - 2x$
 $y' = \frac{16x^3 + 16xy^2 - 12x^2 - 4y^2}{2y - \left(16x^2y + 16y^3 - 8xy \right)}.$

- 4. Suppose the equation of a shock absorber is modeled by the equation $s(t) = 2e^{-0.9} \sin(2\pi t)$, where s is measured in centimeters and t in seconds.
 - (a) Find the velocity, v, after t seconds.
 - (b) What are the units of the velocity?
 - (c) Is the shock absorber compressing or expanding at time t = 3?

Solutions:

 $\int 2y$

- (a) $v(t) = s'(t) = 2e^{-0.9}\cos(2\pi t) \cdot 2\pi$. Notice that $e^{-0.9}$ is a constant (t does not appear in the exponent!) so we use the Constant Multiple Rule, along with the Chain Rule with $u = 2\pi t$ because $\cos(2\pi t)$ is a composition of functions.
- (b) The units of velocity are cm/sec (change in s per change in t). (c) At t = 3, $v(t) = 2e^{-0.9} \cos(2\pi \cdot 3) \cdot 2\pi = 2e^{-0.9} \cos(6\pi) = 2e^{-0.9} \cdot 1 > 0$ so the absorber is expanding.
- 5. Differentiate

$$y = \frac{\left(x^{12} - 2x^8 + 3\right)^{7}}{\left(x^2 - 1\right)^5 \left(x^3 + x + 2\right)^3}$$

Hint: Use logarithmic differentiation. Solution:

Using properties of logarithms, we have

$$\ln y = \ln \left[\frac{\left(x^{12} - 2x^8 + 3\right)^7}{\left(x^2 - 1\right)^5 \left(x^3 + x + 2\right)^3} \right]$$

= $\ln \left(x^{12} - 2x^8 + 3\right)^7 - \ln \left(\left(x^2 - 1\right)^5 \left(x^3 + x + 2\right)^3\right)$
= $\ln \left(x^{12} - 2x^8 + 3\right)^7 - \left[\ln \left(x^2 - 1\right)^5 + \ln \left(x^3 + x + 2\right)^3\right]$
= $7\ln \left(x^{12} - 2x^8 + 3\right) - \left[5\ln \left(x^2 - 1\right) + 3\ln \left(x^3 + x + 2\right)\right]$.

Now differentiate both sides with respect to *x*, and we have (dont' forget the Chain Rule!)

$$\frac{1}{y} \cdot y' = 7 \cdot \frac{1}{x^{12} - 2x^8 + 3} \cdot \left(12x^{11} - 16x^7\right) \\ - \left[5 \cdot \frac{1}{x^2 - 1} \cdot 2x + 3 \cdot \frac{1}{x^3 + x + 2} \cdot \left(3x^2 + 1\right)\right] \\ y' = \frac{\left(x^{12} - 2x^8 + 3\right)^7}{\left(x^2 - 1\right)^5 \left(x^3 + x + 2\right)^3} \cdot \left[7 \cdot \frac{1}{x^{12} - 2x^8 + 3} \cdot \left(12x^{11} - 16x^7\right) \right. \\ \left. - \left[5 \cdot \frac{1}{x^2 - 1} \cdot 2x + 3 \cdot \frac{1}{x^3 + x + 2} \cdot \left(3x^2 + 1\right)\right]\right].$$

2. FROM FORM B

- 2. A mass on a spring vibrates according to the equation $x(t) = 4\cos(3\pi(t+2))$, where t is measured in seconds and x is measured in centimeters.
 - (a) Find the velocity, v, and the acceleration, a, at time t.
 - (b) What are the units of the velocity and the acceleration?
 - (c) In what direction is the mass moving at time t = 12?
 - (d) At what time(s) is the mass stationary? (That is, when is its velocity zero?)

Solutions:

(a) Use the Constant Multiple Rule and the Chain Rule ($u = 3\pi \cdot (t+2)$) to compute

$$v(t) = x'(t) = 4 \cdot [-\sin(3\pi(t+2)) \cdot 3\pi]$$

and then

$$a(t) = v'(t) = -12\pi \cos(3\pi (t+2)) \cdot 3\pi.$$

- (b) The units of velocity are cm/sec. The units of acceleration are cm^2/sec .
- (c) At t = 12,

$$v(12) = -12\pi \sin(3\pi(12+2)) = 4 \cdot 0 = 0,$$

so the mass is *not* moving at time t = 12.

(d) The mass is stationary when v(t) = 0. Thus we need to solve

$$-12\pi \sin (3\pi (t+2)) = 0$$

$$\sin (3\pi (t+2)) = 0$$

$$3\pi (t+2) = \pi k, \ k \in \mathbb{Z}$$

$$t+2 = \frac{k}{3}, \ k \in \mathbb{Z}$$

$$t = -2 + \frac{k}{3}, \ k \in \mathbb{Z}.$$

3. For each function or equation, compute the derivative.

(a)
$$g(u) = \sqrt{2u} - \sqrt{5}u$$

(b) $p(x) = e^{2x} \sin(2x)$
(c) $y = \sqrt{\sin(3x)}$
(d) $G(y) = \frac{2 + \sin y}{2y + \cos y}$
(e) $y \sin(x^2) = x \sin(y^2)$

Solutions:

(a) Observe that we have two constant multiples: $g(u) = \sqrt{2} \cdot \sqrt{u} - \sqrt{5} \cdot u$. (Also, u is **not** in the second square root. Pay attention! This was a WebAssign problem!) Using the Constant Multiple and Power Rules,

$$g'(u) = \sqrt{2} \cdot \frac{1}{2} u^{-\frac{1}{2}} - \sqrt{5} \cdot 1 = \frac{\sqrt{2}}{2\sqrt{u}} - \sqrt{5}.$$

- (b) Observe that p(x) is a composition of functions: $p(u) = e^{u} \sin u$ where u = 2x. By the Chain Rule, $p'(x) = p'(u) \cdot u'$.
 - To compute p'(u), use the Product Rule and $p'(u) = e^u \sin u + e^u \cos u$.
 - To compute u', use the Constant Multiple Rule and $u' = 2 \cdot 1 = 2$. Thus $p'(x) = [e^{2x} \sin(2x) + e^{2x} \cos(2x)] \cdot 2$.
- (c) Observe that y(x) is a double composition of functions: $y(v) = \sqrt{v}$ where $v(u) = \sin u$ and u(x) = 3x. By the Chain Rule,

$$y'(x) = y'(v) \cdot v'(u) \cdot u'(x).$$

• To compute y'(v), use the Power Rule and $y'(v) = \frac{1}{2}v^{-\frac{1}{2}} = \frac{1}{2\sqrt{v}}$.

- You should know that $v'(u) = \cos u$.
- To compute u'(x), use the Constant Multiple Rule and $u'(x) = 3 \cdot 1 = 3$.
- Thus

$$y'(x) = \frac{1}{2\sqrt{\sin(3x)}} \cdot \cos(3x) \cdot 3 = \frac{3\cos(3x)}{2\sqrt{\sin(3x)}}.$$

(d) To compute G'(y), use the Quotient Rule and

$$G'(y) = \frac{(0 + \cos y) \cdot (2y + \cos y) - (2 + \sin y) \cdot (2 - \sin y)}{(2y + \cos y)^2}$$
$$= \frac{2y \cos y + \cos^2 y - 4 + \sin^2 y}{(2y + \cos y)^2}$$
$$= \frac{2y \cos y - 3}{(2y + \cos y)^2}.$$

Remark. We do *not* need implicit differentiation here. G is a function of y, so the derivative is with respect to y, not with respect to x. Thus $\frac{dy}{dx}$ does not need to appear in the derivative.

(e) To compute y', we need implicit differentiation. (Here y depends on x.) So

Left hand side: Chain Rule!

$$\frac{d}{dx}\left[y\sin\left(x^2\right) = x\sin\left(y^2\right)\right]$$

Both sides: Product Rule!

Right hand side: Chain Rule!

Let
$$u = x^2$$
; Let $u = y^2$;
then $u' = 2x$. then $u' = 2y \cdot y'$.
 $y' \cdot \sin(x^2) + y \cdot \cos(x^2) \cdot 2x = 1 \cdot \sin(y^2) + x \cdot \cos(y^2) \cdot 2y \cdot y'$
 $y' [\sin(x^2) - 2xy \cos(y^2)] = \sin(y^2) - 2xy \cos(x^2)$
 $y' = \frac{\sin(y^2) - 2xy \cos(x^2)}{\sin(x^2) - 2xy \cos(y^2)}$.

5. Differentiate

$$y = \left(x^2 + 1\right)^{\arctan x}.$$

Hint: Use logarithmic differentiation.

Solution:

Using properties of logarithms, we have

$$\ln y = \ln \left(\left(x^2 + 1 \right)^{\arctan x} \right)$$
$$\ln y = \arctan x \cdot \ln \left(x^2 + 1 \right).$$

Now differentiate both sides with respect to x, and we have (dont' forget the Product and Chain Rules!)

$$\frac{1}{y} \cdot y' = \frac{1}{x^2 + 1} \cdot \ln(x^2 + 1) + \arctan x \cdot \frac{1}{x^2 + 1} \cdot 2x$$

$$\frac{1}{y} \cdot y' = \frac{1}{x^2 + 1} \cdot \left(\ln(x^2 + 1) + 2x \arctan x\right)$$

$$y' = (x^2 + 1)^{\arctan x} \cdot \frac{1}{x^2 + 1} \cdot \left(\ln(x^2 + 1) + 2x \arctan x\right)$$

$$y' = (x^2 + 1)^{\arctan x - 1} \cdot \left(\ln(x^2 + 1) + 2x \arctan x\right).$$