MAT 167 TEST 2 FORM B (DERIVATIVES)

Directions: Solve each required problem on a separate sheet of paper. Use pencil and show all work; I deduct points for using pen or skipping important steps. You must shut off your cell phone. Some problems are worth more than others. Take your time; quality is preferred to quantity. I encourage you to ask questions.

1. Give (a) an intuitive explanation as to why the derivative of the function $f(x)=x$ at a point $x=a$ is 1 , and (b) a precise explanation as to why the derivative of f at $x=a$ is 1 .

Solution: The derivative of the function $f(x)=x$ at $x=a$ is 1 because
(a) f is a line, so the line tangent to it is the same line; since f has slope 1 , so will the tangent line, and the derivative is the slope of the tangent line.
(b) by definition,

$$
f^{\prime}(x)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{x \rightarrow a} \frac{x-a}{x-a}=\lim _{x \rightarrow a} 1=1
$$

2. The graph of $f(x)$ is shown at [upper] right.
(a) Sketch a graph of $f^{\prime}(x)$.
(b) At what values of x is $f(x)$ not continuous?
(c) At what values of x is $f(x)$ not differentiable?

Solution:

(a) The graph I had is shown at lower right, and is made using the derivative of the function I actually used. You probably can't see them unless you enlarge the image, but those are holes at the ends of the line segments. I accepted some different graphs, as well. What mattered was that the value of the derivative at any point x had to look like it was the slope of the line tangent to the original function at that point: when the original graph is rising (resp. declining) linearly, the derivative should have a constant value of 3 (resp. -3), and when the original graph is horizontal, the derivative should have a constant value of 0 .
(b) It looks as if f is continuous on its domain $[0,6]$.
(c) It looks as if f is continuous on its domain $[0,6] e x$ cept at the points where the deirvative changes suddenly, $x=2$ and $x=4$.

3. Compute the derivatives of the following functions. You may use any property or shortcut we have described in class.
(a) 7^{x}
(b) $3 \sqrt{x}-4 x^{2}+2$
(c) 3^{5}
(d) $\tan x\left(\sin x-x^{2}\right)$
(e) $\frac{e^{x}}{x^{2}}$
(f) $(2 x-1)^{5}$
(g) $\cot ^{2} x$
(h) $(\arcsin (2 x)-3)^{25}$
(i) $\ln (3 x-5)$

Solution:

(a) $7^{x} \ln 7$
(b) $3 \cdot \frac{1}{2} x^{-\frac{1}{2}}-8 x+0=\frac{3}{2 \sqrt{x}}-8 x$
(c) 0 , since 3^{5} is a constant
(d) use the product rule: $\sec ^{2} x\left(\sin x-x^{2}\right)+\tan x(\cos x-2 x)$
(e) use the quotient rule:

$$
\frac{e^{x} \cdot x^{2}-e^{x} \cdot 2 x}{\left(x^{2}\right)^{2}}=\frac{x e^{x}(x-2)}{x^{4}}=\frac{e^{x}(x-2)}{x^{3}}
$$

(f) use the chain rule: $5(2 x-1)^{4} \cdot 2=10(2 x-1)^{4}$
(g) use the chain rule: $2 \cot x \cdot\left(-\csc ^{2} x\right)$
(h) use the chain rule, twice:

$$
25(\arcsin (2 x)-3)^{24} \cdot \frac{1}{\sqrt{1-(2 x)^{2}}} \cdot 2
$$

(i) use the chain rule:

$$
\frac{1}{3 x-5} \cdot 3
$$

4. Where does the equation $f(x)=e^{x} / x^{2}$ have a horizontal tangent line?

Solution: We need the derivative, which is the slope of the tangent line, to be zero. Since $f^{\prime}(x)=$ $e^{x}(x-2) / x^{3}$ (see 3(e)) we have

$$
\begin{aligned}
& \frac{e^{x}(x-2)}{x^{3}}=0 \\
& e^{x}(x-2)=0 .
\end{aligned}
$$

Since $e^{x} \neq 0$ for any value of x, we solve

$$
\begin{aligned}
x-2 & =0 \\
x & =2 .
\end{aligned}
$$

Hence, f has a horizontal tangent line when $x=2$.
5. Use implicit differentation to compute $d y / d x$ at $(\pi, 0)$ if $e^{x+y}=x y$.

Solution: Differentiation, with the chain rule and principles of implicit differentiation, gives us

$$
\begin{aligned}
e^{x+y} \cdot\left(1+y^{\prime}\right) & =y+x y^{\prime} \\
e^{x+y}+y^{\prime} e^{x+y} & =y+x y^{\prime} \\
y^{\prime}\left(e^{x+y}-x\right) & =y-e^{x+y} \\
y^{\prime} & =\frac{y-e^{x+y}}{e^{x+y}-x} .
\end{aligned}
$$

Unfortunately, when I changed the equation from Form A, I neglected to change the point as well, and the point $(\pi, 0)$ does not lie on this curve. If it were on the curve, we would find $d y / d x$ at $(\pi, 0)$ by substitution:

$$
y^{\prime}=\frac{0-e^{\pi+0}}{e^{\pi+0}-\pi}=\frac{-e^{\pi}}{e^{\pi}-\pi} .
$$

6. Compute the derivative of

$$
\frac{\tan ^{5}(3 x-2) \sin ^{3}(2 x)}{x^{12}(4 x+1)^{3}}
$$

Solution: It's a lot easier if you use logarithmic differentiation, which was the point...

$$
\begin{aligned}
y & =\frac{\tan ^{5}(3 x-2) \sin ^{3}(2 x)}{x^{12}(4 x+1)^{3}} \\
\ln y & =\ln \frac{\tan ^{5}(3 x-2) \sin ^{3}(2 x)}{x^{12}(4 x+1)^{3}} \\
& =5 \ln \tan (3 x-2)+3 \ln \sin (2 x)-12 \ln x-3 \ln (4 x+1) .
\end{aligned}
$$

Now differentiate, preferably without neglecting the chain rule or principles of implicit differentiation:

$$
\begin{aligned}
\frac{1}{y} \cdot y^{\prime} & =5 \cdot \frac{1}{\tan (3 x-2)} \cdot \sec ^{2}(3 x-2) \cdot 3+3 \cdot \frac{1}{\cos (2 x)} \cdot 2-12 \cdot \frac{1}{x}-3 \cdot \frac{1}{4 x+1} \cdot 4 \\
\frac{y^{\prime}}{y} & =\frac{15 \sec ^{2}(3 x-2)}{\tan (3 x-2)}+\frac{6}{\cos (2 x)}-\frac{12}{x}-\frac{12}{4 x+1} \\
y^{\prime} & =\underbrace{\frac{\tan ^{5}(3 x-2) \sin ^{3}(2 x)}{x^{12}(4 x+1)^{3}}}_{y} \cdot\left[\frac{15 \sec ^{2}(3 x-2)}{\tan (3 x-2)}+\frac{6}{\cos (2 x)}-\frac{12}{x}-\frac{12}{4 x+1}\right] .
\end{aligned}
$$

