MAT 167 TEST 2 FORM A (DERIVATIVES)

Directions: Solve each required problem on a separate sheet of paper. Use pencil and show all work; I deduct points for using pen or skipping important steps. You must shut off your cell phone. Some problems are worth more than others. Take your time; quality is preferred to quantity. I encourage you to ask questions.

1. Give (a) an intuitive explanation as to why the derivative of the function $f(x)=c$ at a point $x=a$ is 0 , and (b) a precise explanation as to why the derivative of f at $x=a$ is 0 .
Solution: The derivative of the function $f(x)=c$ at $x=a$ is 0 because
(a) f is a line, so the line tangent to it is the same line; since f has zero slope, so will the tangent line, and the derivative is the slope of the tangent line.
(b) by definition,

$$
f^{\prime}(x)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{x \rightarrow a} \frac{c-c}{x-a}=\lim _{x \rightarrow a} 0=0 .
$$

2. The graph of $f(x)$ is shown at [upper] right.
(a) Sketch a graph of $f^{\prime}(x)$.
(b) At what values of x is $f(x)$ not continuous?
(c) At what values of x is $f(x)$ not differentiable?

Solution:

(a) The graph I had is shown at lower right, and is made using the derivative of the function I actually used. I accepted some different graphs, as well. What mattered was that the value of the derivative at any point x had to look like it was the slope of the line tangent to the original function at that point: when the original graph seems to level off at its peaks, the derivative should intersect the x-axis, and when the original graph "bounces", the derivative should make a sudden jump (or have an asymptote).
(b) If f continues indefinitely as it does in the graph, it is always continuous.

If f continues indefinitely as it does in the graph, it is non-differentiable at integer values of x, because it has a cusp at those points.
3. Compute the derivatives of the following functions. You may use any property or shortcut we have described in class.
(a) x^{7}
(b) 2^{π}
(c) $4 \sqrt{x}-3 x^{2}+2$
(d) $x^{2} e^{x}$
(e) $\frac{\tan x}{\sin x+1}$
(f) $3^{2 x-1}$
(g) $(\arctan (2 x)-3)^{25}$
(h) $\sec ^{2} x$
(i) $\ln (5 x-3)$

Solution:

(a) $6 x^{7}$
(b) 0 , since 2^{π} is a constant
(c) $4 \cdot \frac{1}{2} x^{-\frac{1}{2}}-6 x+0=2 / \sqrt{x}-6 x$
(d) use the product rule: $2 x e^{x}+x^{2} e^{x}$
(e) use the quotient rule:

$$
\frac{\sec ^{2} x \cdot(\sin x+1)-\tan x \cdot \cos x}{(\sin x+1)^{2}}=\frac{\sec ^{2} x \cdot(\sin x+1)-\sin x}{(\sin x+1)^{2}}
$$

(f) use the chain rule: $3^{2 x-1} \ln 3 \cdot 2$
(g) use the chain rule, twice:

$$
25(\arctan (2 x)-3)^{24} \cdot \frac{1}{(2 x)^{2}+1} \cdot 2
$$

(h) use the chain rule: $2 \sec x \cdot \sec x \tan x$
(i) use the chain rule:

$$
\frac{1}{5 x-3} \cdot 5
$$

4. Where does the equation $f(x)=x^{2} e^{x}$ have a horizontal tangent line?

Solution: We need the derivative, which is the slope of the tangent line, to be zero. Since $f^{\prime}(x)=$ $2 x e^{x}+x^{2} e^{x}($ see $3(\mathrm{~d}))$ we have

$$
\begin{aligned}
2 x e^{x}+x^{2} e^{x} & =0 \\
e^{x}\left(2 x+x^{2}\right) & =0
\end{aligned}
$$

Since $e^{x} \neq 0$ for any value of x, we solve

$$
\begin{aligned}
2 x+x^{2} & =0 \\
x(2+x) & =0 \\
x & =0,2 .
\end{aligned}
$$

Hence, f has a horizontal tangent line when $x=0$ or $x=2$.
5. Use implicit differentation to compute $d y / d x$ at $(\pi, 0)$ if $\sin (x+y)=x y$.

Solution: Differentiation, with the chain rule and principles of implicit differentiation, gives us

$$
\begin{aligned}
\cos (x+y) \cdot\left(1+y^{\prime}\right) & =1 \cdot y+x \cdot y^{\prime} \\
\cos (x+y)+y^{\prime} \cos (x+y) & =y+x y^{\prime} \\
y^{\prime}[\cos (x+y)-x] & =y-\cos (x+y) \\
y^{\prime} & =\frac{y-\cos (x+y)}{[\cos (x+y)-x]}
\end{aligned}
$$

To find $d y / d x$ at $(\pi, 0)$, we substitute $x=\pi$ and $y=0$ to obtain

$$
y^{\prime}=\frac{0-\cos (\pi+0)}{\cos (\pi+0)-\pi}=\frac{-1}{1-\pi}=\frac{1}{\pi-1}
$$

6. Compute the derivative of

$$
\frac{(3 x-2)^{5} \sin ^{7}(2 x)}{x^{3}(4 x+1)^{12}}
$$

Solution: It's a lot easier if you use logarithmic differentiation, which was the point...

$$
\begin{aligned}
y & =\frac{(3 x-2)^{5} \sin ^{7}(2 x)}{x^{3}(4 x+1)^{12}} \\
\ln y & =\ln \frac{(3 x-2)^{5} \sin ^{7}(2 x)}{x^{3}(4 x+1)^{12}} \\
\ln y & =5 \ln (3 x-2)+7 \ln \sin (2 x)-3 \ln x-12 \ln (4 x+1) .
\end{aligned}
$$

Now differentiate, preferably without neglecting the chain rule or principles of implicit differentiation:

$$
\begin{aligned}
\frac{1}{y} \cdot y^{\prime} & =5 \cdot \frac{1}{3 x-2} \cdot 3+7 \frac{1}{\sin (2 x)} \cdot \cos (2 x) \cdot 2-3 \cdot \frac{1}{x}-12 \cdot \frac{1}{4 x+1} \cdot 4 \\
\frac{y^{\prime}}{y} & =\frac{15}{3 x-2}+14 \cot (2 x)-\frac{3}{x}-\frac{48}{4 x+1} \\
y^{\prime} & =\underbrace{\frac{(3 x-2)^{5} \sin ^{7}(2 x)}{x^{3}(4 x+1)^{12}}}_{y} \cdot\left[\frac{15}{3 x-2}+14 \cot (2 x)-\frac{3}{x}-\frac{48}{4 x+1}\right]
\end{aligned}
$$

