MAT 167 TEST 1 FORM B (LIMITS)

Directions: Solve each required problem on a separate sheet of paper. Use pencil and show all work; I deduct points for using pen or skipping important steps. You must shut off your cell phone. Some problems are worth more than others. Take your time; quality is preferred to quantity. I encourage you to ask questions.

1. Give (a) an intuitive definition of continuity of a function f at a point x = a, and (b) the precise definition of continuity of a function f at a point x = a.

Solution: f is continuous at a point x = a if

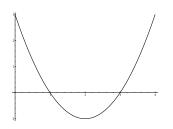
(a) its graph has no holes, skips, or vertical asymptotes.

(b) we can find the limit by substitution; that is, $\lim_{x \to a} f(x) = f(a)$.

2. Graph the function $f(x) = x^2 - 4x + 3$. Identify the point (a, f(a)) at which the function has a tangent line with zero slope, and confirm your answer by making a table of slopes of secant lines to approximate the slope of the tangent line at this point.

Solution: The graph of $f(x) = x^2 - 4x + 3$ is at right. It looks as if the function has a tangent line with zero slope at x = 3.

				1.999						
$\frac{f(x)-f(2)}{x-2}$	-1	-0.1	-0.01	-0.001	0.001	0.01	0.1	1		
It looks as if the slope of the tangent line will be 0.										



3. Use a table of values to estimate $\lim_{x\to 0^+} (x \ln x)$, correct to two decimal places.

Solution: I would use the table below, but there are other possibilities.

(You don't have to use the 10^{-n} notation. I did so in order to save time.)

4. If possible, determine a value of b such that $\lim_{x\to 2} p(x)$ exists.

$$p(x) = \begin{cases} 3x+b & \text{if } x \leq 2\\ x-2 & \text{if } x > 2. \end{cases}$$

Solution: We need $\lim_{x\to 2^{-}} p(x) = \lim_{x\to 2^{+}} p(x)$. For the left-sided limit, x < 2, so we use p(x) = 3x + b. For the right-sided limit, x > 2, so we use p(x) = x - 2. By substitution,

$$\lim_{x \to 2^{-}} (3x + b) = \lim_{x \to 2^{+}} (x - 2)$$

6 + b = 0
b = -6.

- 5. The table below gives various values of three functions f, g, b around the point $x = \pi$.
 - (a) What would be the value of $\lim_{x\to\pi} f(x)$ if we applied the Squeeze Theorem?
 - (b) What aspects of the data suggest that we can apply the Squeeze Theorem?
 - (c) What additional information would we need to be sure that we can?

x	2.5	3	3.1	$\lim_{x \to \pi} \cdots$	3.2	3.3	3.5
g(x)	11	7	6	5.8	5.5	5.3	5.1
f(x)	10	-5	6	;	5	-1	4
b(x)	-20	-10	0	5.8	5	-3	-12

Solution: (a) 5.8

(b) It *looks* as if $h(x) \le f(x) \le g(x)$ for all x in the domain [2.5, 3.5].

(c) Since the table only gives a sample of six points out of infinitely many, we would need to know that f really does lie between g and h for all $x \in [2.5, 3.5]$ — or at least for some neighborhood of π .

6. Determine the interval(s) on which the function $g(x) = \sqrt{x^4 - 1}$ is continuous.

Solution: We know from class that this type of function — the composition of two functions that are continuous on their domains — is continuous on its domain. So, we need merely find the domain. A number inside a square root should be nonnegative:

$$x^4 - 1 \ge 0$$
$$x^4 > 1$$

This is true if $x \ge 1$ or if $x \le 1$. Hence, g is continuous on $(-\infty, 1] \cup [1, \infty)$.

7. Identify and classify (as holes, jumps, or vertical asymptotes) all the discontinuities of

$$r(x) = \frac{x^4 + 7}{x^5 + x^2 - x}.$$

Also find the horizontal asymptotes. Do not use any shortcuts you may have learned in pre-calculus, unless you're willing to explain them using principles of Calculus.

Solution: We know from class that this function - a *ratio*nal function - is continuous on its domain. It is define everywhere except where the denominator is zero. That is,

$$x^{5} + x^{2} - x = 0$$

x (x⁴ + x - 1) = 0
x = 0, -1.22074, 0.72449.

Hence, it is discontinuous at each of these points. At each of these three values, the numerator is nonzero; in fact, the numerator is always positive. Hence, all three are vertical asymptotes.

We find the horizontal asymptote by considering

$$\lim_{x \to \infty} r(x) = \lim_{x \to \infty} \frac{x^4 + 7}{x^5 + x^2 - x} = \lim_{x \to \infty} \left(\frac{x^4 + 7}{x^5 + x^2 - x} \cdot \frac{\frac{1}{x^4}}{\frac{1}{x^4}} \right) = \lim_{x \to \infty} \frac{1 + \frac{7}{x}}{x + \frac{1}{x^2} - \frac{1}{x^3}} = 0.$$

Note: Apparently, I made a typographical error when writing this problem, which requires you to use an approximation technique to compute all the roots. You shouldn't encounter a similar problem with the function I give you on the exam.

8. List the first five terms of the sequence
$$\frac{n^2+1}{n}$$
, then find $\lim_{n\to\infty} \frac{n^2+1}{n}$.

Solution: The first five terms are

$$\frac{1+1}{1} = 2, \quad \frac{4+1}{2} = \frac{5}{2}, \quad \frac{9+1}{3} = \frac{10}{3}, \quad \frac{16+1}{4} = \frac{17}{4}, \quad \frac{25+1}{5} = \frac{26}{5}$$

The limit is

$$\lim_{n\to\infty}\left(\frac{n^2+1}{n}\cdot\frac{\frac{1}{n}}{\frac{1}{n}}\right) = \lim_{n\to\infty}\frac{n+\frac{1}{n}}{1} = \infty.$$

9. If f(x) = 4x - 3, find

- (a) $L = \lim_{x \to 3} f(x)$ using the properties of limits; and
- (b) δ such that if $|x-3| < \delta$, then |f(x) L| < 0.01.

Solution: (a) Since f is a polynomial, we can substitute: $f(x) = 4 \cdot 3 - 3 = 9$. We can also use more basic properties:

 $\lim_{x \to 3} (4x - 3) = \lim_{x \to 3} (4x) - \lim_{x \to 3} 3 (\text{sum property of limits})$ = $4 \lim_{x \to 3} x - \lim_{x \to 3} 3$ (constant multiple property) = $4 \cdot 3 - \lim_{x \to 3} 3$ (limit of powers of x) = 12 - 3 (limit of a constant) = 9. (b) We need

$$\begin{aligned} |f(x) - 9| < 0.01 \\ |(4x - 3) - 9| < 0.01 \\ |4x - 12| < 0.01 \\ 4|x - 3| < 0.01 \\ |x - 3| < 0.0025 = \frac{1}{400}. \end{aligned}$$

The left side has the form $|x - 3| < \delta$! Thus, if we set $\delta = \frac{1}{400}$, then $|f(x) - L| < 0.01$.