MAT 167 TEST 1 FORM A (LIMITS)

Directions: Solve each required problem on a separate sheet of paper. Use pencil and show all work; I deduct points for using pen or skipping important steps. You must shut off your cell phone. Some problems are worth more than others. Take your time; quality is preferred to quantity. I encourage you to ask questions.

1. Give (a) an intuitive definition of the limit of a function f at a point x = a, and (b) the precise definition of the limit of a function f at a point x = a.

Solution: $\lim_{x \to a} f(x) = L$ if

(a) L is the y-value that f approaches as x approaches a.

(b) for any $\epsilon > 0$, we can find $\delta > 0$ such that $|x - a| < \delta$ implies that $|f(x) - L| < \epsilon$.

2. Graph the parabola $f(x) = x^2$. Explain why the secant lines between the points (-a, f(-a)) and (a, f(a)) have zero slope. What is the slope of the tangent line at x = 0, and *why?*

Solution: The graph of $f(x) = x^2$ is at right. The secant lines between (-a, f(-a)) and (a, f(a)) have slope

$$m_{\text{sec}} = \frac{f(-a) - f(a)}{-a - a} = \frac{a^2 - a^2}{-2a} = 0.$$

The slope of the tangent line at x = 0 is also zero, because

$$m_{\tan} = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^2}{x} = \lim_{x \to 0} x = 0.$$

3. Use a table of values to estimate $\lim_{x\to 0^+} (x \ln x)$, correct to two decimal places.

Solution: I would use the table below, but there are other possibilities.

(You don't have to use the 10^{-n} notation. I did so in order to save time.)

4. If possible, determine a value of b such that $\lim_{x\to 2} p(x)$ exists.

$$p(x) = \begin{cases} 3x+b & \text{if } x \leq 2\\ x-2 & \text{if } x > 2. \end{cases}$$

Solution: We need $\lim_{x\to 2^{-}} p(x) = \lim_{x\to 2^{+}} p(x)$. For the left-sided limit, x < 2, so we use p(x) = 3x + b. For the right-sided limit, x > 2, so we use p(x) = x - 2. By substitution,

$$\lim_{x \to 2^{-}} (3x + b) = \lim_{x \to 2^{+}} (x - 2)$$

6 + b = 0
b = -6.

5. If f(x) = 3x - 4, find

(a) $L = \lim_{x \to 3} f(x)$ using the properties of limits; and

(b) δ such that if $|x-3| < \delta$, then |f(x) - L| < 0.01.

Solution: (a) Since f is a polynomial, we can substitute: $f(x) = 3 \cdot 3 - 4 = 5$. We can also use more basic properties:

$$\lim_{x \to 3} (3x - 4) = \lim_{x \to 3} (3x) - \lim_{x \to 3} 4 (\text{sum property of limits})$$

= $3 \lim_{x \to 3} x - \lim_{x \to 3} 4$ (constant multiple property)
= $3 \cdot 3 - \lim_{x \to 3} 4$ (limit of powers of x)
= $9 - 4$ (limit of a constant)
= 5.

(b) We need

$$|f(x) - 5| < 0.01$$

$$|(3x - 4) - 5| < 0.01$$

$$|3x - 9| < 0.01$$

$$3|x - 3| < 0.01$$

$$|x - 3| < 0.0\overline{3} = \frac{1}{30}.$$

The left side has the form $|x-3| < \delta!$ Thus, if we set $\delta = \frac{1}{30}$, then |f(x) - L| < 0.01.

6. Determine the interval(s) on which the function $g(x) = \sqrt{x^4 - 1}$ is continuous.

Solution: We know from class that this type of function — the composition of two functions that are continuous on their domains — is continuous on its domain. So, we need merely find the domain. A number inside a square root should be nonnegative:

$$x^4 - 1 \ge 0$$
$$x^4 \ge 1.$$

This is true if $x \ge 1$ or if $x \le 1$. Hence, g is continuous on $(-\infty, 1] \cup [1, \infty)$.

7. Identify and classify (as holes, jumps, or vertical asymptotes) all the discontinuities of

$$r(x) = \frac{5x^2 - 15x}{2x^2 - 4x}.$$

Also find the horizontal asymptotes. Do not use any shortcuts you may have learned in pre-calculus, unless you're willing to explain them using principles of Calculus.

Solution: We know from class that this function - a rational function - is continuous on its domain. It is define everywhere except where the denominator is zero. That is,

$$2x^{2} - 4x = 0$$

$$2x (x - 2) = 0$$

$$x = 0, 2.$$

Hence, it is discontinuous at x = 0 and at x = 2. When x = 0, the numerator is also zero, so we have a hole. When x = 2, the numerator is nonzero, so we have a vertical asymptote.

We find the horizontal asymptote by considering

$$\lim_{x \to \infty} r(x) = \lim_{x \to \infty} \frac{5x^2 - 15x}{2x^2 - 4x} = \lim_{x \to \infty} \left(\frac{5x^2 - 15x}{2x^2 - 4x} \cdot \frac{\frac{1}{x^2}}{\frac{1}{x^2}} \right) = \lim_{x \to \infty} \frac{5 - \frac{15}{x}}{2 - \frac{4}{x}} = \frac{5}{2}.$$

8. List the first five terms of the sequence
$$\frac{n^2+1}{n}$$
, then find $\lim_{n \to \infty} \frac{n^2+1}{n}$

Solution: The first five terms are

$$\frac{1+1}{1} = 2, \quad \frac{4+1}{2} = \frac{5}{2}, \quad \frac{9+1}{3} = \frac{10}{3}, \quad \frac{16+1}{4} = \frac{17}{4}, \quad \frac{25+1}{5} = \frac{26}{5}.$$

The limit is

$$\lim_{n \to \infty} \left(\frac{n^2 + 1}{n} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} \right) = \lim_{n \to \infty} \frac{n + \frac{1}{n}}{1} = \infty.$$

- 9. The table below gives various values of three functions f, g, b around the point x = π.
 (a) What would be the value of lim_{x→π} f (x) if we applied the Squeeze Theorem?

 - (b) What aspects of the data suggest that we can apply the Squeeze Theorem?
 - (c) What additional information would we need to be sure that we can apply the Squeeze Theorem?

x	2.5	3	3.1	$\lim_{x \to \pi} \cdots$	3.2	3.3	3.5
g(x)	11	7	6	5.8	5.5	5.3	5.1
$f(\mathbf{x})$	10	-5	6	;	5	-1	4
b(x)	-20	-10	0	5.8	5	-3	-12

Solution: (a) 5.8

(b) It *looks* as if $h(x) \le f(x) \le g(x)$ for all x in the domain [2.5, 3.5].

(c) Since the table only gives a sample of six points out of infinitely many, we would need to know that f really does lie between g and h for all $x \in [2.5, 3.5]$ — or at least for some neighborhood of π .