MAT 102 TEST 1, FORM B

Directions: Solve these problems on your own paper. Problems are not weighted equally, because some parts take more work than others. You may write on this paper, but I will not read it. Show all necessary work: computations that are not obvious must be shown. As to what is "obvious", better safe than sorry!

1. Give both a geometric definition and the precise definition of continuity.

Geometrically, continuity means that we can draw the graph of a function without lifting our pencil at a hole, jump, or asymptote. Precisely, a function is continuous whenever we can evaluate the limit by substitution; that is, $\lim _{x \rightarrow a} f(x)=f(a)$.
2. Given the graph of $f(x)$ at right,
(a) find $\lim _{x \rightarrow 1^{-}} f(x) ; 2$
(b) find $\lim _{x \rightarrow 1^{+}} f(x) ; 2$
(c) find $\lim _{x \rightarrow 1} f(x) .2$
(d) Is f continuous at $x=1$? no

3. Compute $\lim _{x \rightarrow 4} \frac{x^{2}-16}{x-4}$ using a table of values.

x	y
3	7
3.5	7.5
3.9	7.9
3.99	7.99
4	$?$
4.01	8.01
4.1	8.1
4.5	8.5
5	9

It looks as if the limit is 8 .
4. Let $f(x)=2-x^{3}$.
(a) Find the average rate of change between $x=1$ and $x=2$.

$$
\frac{\Delta y}{\Delta x}=\frac{f(2)-f(1)}{2-1}=\frac{\left(2-2^{3}\right)-\left(2-1^{3}\right)}{1}=\frac{-6-1}{1}=-7
$$

(b) Find $f^{\prime}(x)$ using the definition of the derivative.

$$
\begin{aligned}
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & =\lim _{h \rightarrow 0} \frac{\left[2-(x+h)^{3}\right]-\left(2-x^{3}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[2-\left(x^{b}+3 x^{2} b+3 x h^{2}+b^{3}\right)\right]-\left(2-x^{3}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-\not b\left(3 x^{2}+3 x h+b^{2}\right)}{\not b} \\
& =-\left(3 \cdot x^{2}+3 x \cdot 0+0^{2}\right) \\
& =-3 x^{2} .
\end{aligned}
$$

(c) Use your answer to part (b) to find the instantaneous rate of change at $x=1$. By substitution, $f^{\prime}(1)=-3 \cdot 1^{2}=-3$.
5. Use the properties of the derivative to evaluate the derivative of each of the following functions.
(a) $f(x)=2-x^{3}$
(b) $f(x)=\left(2-x^{3}\right)\left(2 x^{2}-x\right)$
(c) $f(x)=\frac{2-x^{3}}{2 x^{2}-x}$
(d) $f(x)=3\left(2-x^{3}\right)^{20}-2$
(a) is straightforward: $f^{\prime}(x)=0-3 x^{2}=-3 x^{2}$.
(b) can be attacked by expansion or the product rule, which gives $-3 x^{2}\left(2 x^{2}-x\right)+\left(2-x^{3}\right)$. $(4 x-1)$.
(c) requires the quotient rule:

$$
f^{\prime}(x)=\frac{\underbrace{-3 x^{2}}_{\text {deriv first }} \underbrace{\left(2 x^{2}-x\right)}_{\text {second }}-\underbrace{\left(2-x^{3}\right)}_{\text {first }} \cdot \underbrace{(4 x-1)}_{\text {deriv second }}}{\underbrace{\left(2 x^{2}-x\right)^{2}}_{\text {second squared }}}
$$

and you can stop there. In fact, you probably should stop there.
(d) requires the chain rule, because it has the form $y=3 u^{20}-2$ where $u=2-x^{3}$. The chain rule is

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}=\left(3 \cdot 20 u^{19}-0\right) \cdot\left(-3 x^{2}\right)=60 u^{19} \cdot\left(-3 x^{2}\right)=-180 x^{2}\left(2-x^{3}\right)^{19}
$$

6. Suppose the number of traffic fatalities per hundred million miles traveled approximates

$$
f(x)=\frac{2}{\sqrt{x}}+1
$$

where x stands for the number of years since 1975. Find the rate of change of this percentage in the year 2004, and interpret your answer.

The year 2004 occurs when $x=29$ (years since 1975) and "rate of change" means "derivative". So,

$$
f^{\prime}(x)=2 \cdot\left(-\frac{1}{2} x^{-3 / 2}\right)+0=-\frac{1}{x \sqrt{x}}
$$

Evaluated at $x=29$, we find that

$$
f^{\prime}(29)=-\frac{1}{29 \sqrt{29}} \approx-0.0064
$$

This means that the number of traffic fatalities was decreasing by roughly $.6 \%$ in 2004.

