MAT 102 TEST 1, FORM A

Directions: Solve these problems. You may write on this paper, but I will not read it. Problems are not weighted equally. Show all necessary work: computations that are not obvious must be shown. As for what is "obvious", better safe than sorry!

1. Give both a geometric definition and the precise definition of instantaneous rate of change. Geometrically, the instantaneous rate of change of a function f at $x=a$ is the slope of the line tangent to f at $x=a$. Precisely, it is

$$
\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}, \quad \text { or, } \quad \lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}, \quad \text { or, } \quad \lim _{h \rightarrow 0} \frac{f(a+b)-f(a)}{h} .
$$

2. Compute $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}$ using a table of values.

x	y
2	5
2.5	5.5
2.9	5.9
2.99	5.99
3	$?$
3.01	6.01
3.1	6.1
3.5	6.5
4	7

It looks as if the limit is 6 .
3. Given the graph of $f(x)$ at right,
(a) find $\lim _{x \rightarrow 1^{-}} f(x) ;-2$
(b) find $\lim _{x \rightarrow 1^{+}} f(x) ;-1$
(c) find $\lim _{x \rightarrow 1} f(x)$. DNE
(d) Is f continuous at $x=1$? no

4. Let $f(x)=x^{3}-2$.
(a) Find the average rate of change between $x=1$ and $x=2$.

$$
\frac{\Delta y}{\Delta x}=\frac{f(2)-f(1)}{2-1}=\frac{\left(2^{3}-2\right)-\left(1^{3}-2\right)}{1}=\frac{6+1}{1}=7
$$

(b) Find $f^{\prime}(x)$ using the definition of the derivative.

$$
\begin{aligned}
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & =\lim _{h \rightarrow 0} \frac{\left[(x+h)^{3}-2\right]-\left(x^{3}-2\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[\left(x^{6}+3 x^{2} h+3 x b^{2}+b^{3}\right)-\varepsilon\right]-\left(x^{\gamma}-2\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{h\left(3 x^{2}+3 x h+b^{2}\right)}{\not b} \\
& =3 \cdot x^{2}+3 x \cdot 0+0^{2} \\
& =3 x^{2} .
\end{aligned}
$$

(c) Use your answer to part (b) to find the instantaneous rate of change at $x=1$. By substitution, $f^{\prime}(1)=3 \cdot 1^{2}=3$.
5. Use the properties of the derivative to evaluate the derivative of each of the following functions.
(a) $f(x)=x^{3}-2$
(b) $f(x)=\left(x^{3}-2\right)\left(2 x^{2}-x\right)$
(c) $f(x)=\frac{x^{3}-2}{2 x^{2}-x}$
(d) $f(x)=3\left(x^{3}-2\right)^{20}-2$
(a) is straightforward: $f^{\prime}(x)=3 x^{2}-0=3 x^{2}$.
(b) can be attacked by expansion or the product rule, which gives $3 x^{2}\left(2 x^{2}-x\right)+\left(x^{3}-2\right)$. $(4 x-1)$.
(c) requires the quotient rule:

$$
f^{\prime}(x)=\frac{\underbrace{3 x^{2}}_{\text {deriv first }} \underbrace{\left(2 x^{2}-x\right)}_{\text {second }}-\underbrace{\left(x^{3}-2\right)}_{\text {first }} \cdot \underbrace{4 x-1}_{\text {deriv second }}}{\underbrace{\left(2 x^{2}-x\right)^{2}}_{\text {second squared }}}
$$

and you can stop there. In fact, you probably should stop there.
(d) requires the chain rule, because it has the form $y=3 u^{20}-2$ where $u=x^{3}-2$. The chain rule is

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}=\left(3 \cdot 20 u^{19}-0\right) \cdot 3 x^{2}=60 u^{19} \cdot 3 x^{2}=180 x^{2}\left(x^{3}-2\right)^{19}
$$

6. Suppose the number of traffic fatalities per hundred million miles traveled approximates

$$
f(x)=\frac{2}{\sqrt{x}}+1
$$

where x stands for the number of years since 1975. Find the (instantaneous) rate of change of this percentage in the year 2006, and interpret your answer.

The year 2006 occurs when $x=31$ (years since 1975) and "rate of change" means "derivative". So,

$$
f^{\prime}(x)=2 \cdot\left(-\frac{1}{2} x^{-3 / 2}\right)+0=-\frac{1}{x \sqrt{x}} .
$$

Evaluated at $x=31$, we find that

$$
f^{\prime}(31)=-\frac{1}{31 \sqrt{31}} \approx-0.00579
$$

This means that the number of traffic fatalities was decreasing by roughly $.6 \%$ in 2006.

