QUIZ SOLUTIONS

QuIZ THE FIRST

1. Given the graph of $f(x)$ at right, find $\lim _{x \rightarrow 2^{-}} f(x)$, $\lim _{x \rightarrow 2^{+}} f(x)$, and $\lim _{x \rightarrow 2} f(x)$.

Solution: $\lim _{x \rightarrow 2^{-}} f(x)=3, \lim _{x \rightarrow 2^{+}} f(x)=1$. Since the limits disagree, $\lim _{x \rightarrow 2} f(x)$ is undefined.
2. Evaluate $\lim _{x \rightarrow 0}\left(4 x^{2}-3 x+4\right)$.

Solution: Since $4 x^{2}-3 x+4$ is a polynomial, and therefore continuous, we can evaluate the limit by substitution. Thus, $\lim _{x \rightarrow 0}\left(4 x^{2}-3 x+4\right)=4 \cdot 0^{2}-3 \cdot 0+4=4$.

3. Which function(s) is (are) continuous everywhere?

$$
4 x^{2}-3 x+4 \quad-12 \quad \frac{3}{x} \quad e^{x}
$$

Solution: Polynomials are continuous everywhere, so the first two functions are continuous. (Constants are also polynomials.) The third function has division by 0 at $x=0$, so it cannot be continuous. Using the intuitive definition of continuity, we can determine that e^{x} is also continuous, because we never have to pick up the pencil while drawing its graph.
4. What was $\$ 2.3$ about?

Solution: Shortcuts for taking derivatives. - Or, derivative properties. - Or, Marginal Cost and its ilk.

QUIZ THE SECOND

1. By imagining tangent lines at P_{1}, P_{2}, and P_{3} in the graph, state whether the slopes are positive, negative, or zero.
Solution: Slope is negative at P_{1}, zero at P_{2}, positive at P_{3}.

2. For $f(x)=x^{2}-2 x$, find the average rate of change between the given points. Then, indicate the value the average rates of change are approaching.
(a) $x=0, x=2$
(b) $x=0, x=1$
(c) $x=0, x=1 / 2$
(d) $x=0, x=1 / 10$

Solution:
(a) $\frac{\Delta y}{\Delta x}=\frac{f(2)-f(0)}{2-0}=\frac{\left(2^{2}-2 \cdot 2\right)-\left(0^{2}-2 \cdot 0\right)}{2}=\frac{0-0}{2}=0$
(b) $\frac{\Delta y}{\Delta x}=\frac{f(1)-f(0)}{1-0}=\frac{\left(1^{2}-2 \cdot 1\right)-\left(0^{2}-2 \cdot 0\right)}{1}=\frac{-1-0}{1}=-1$
(c) $\frac{\Delta y}{\Delta x}=\frac{f(1 / 2)-f(0)}{1 / 2-0}=\frac{\left((1 / 2)^{2}-2 \cdot 1 / 2\right)-\left(0^{2}-2 \cdot 0\right)}{1 / 2}=\frac{-3 / 4-0}{1 / 2}=-1.5$
(d) $\frac{\Delta y}{\Delta x}=\frac{f(1 / 10)-f(0)}{1 / 10-0}=\frac{\left((1 / 10)^{2}-2 \cdot 1 / 10\right)-\left(0^{2}-2 \cdot 0\right)}{1 / 10}=\frac{19 / 100}{1 / 10}=-1.9$

The values approach - 2 .
3. Use the definition of the instantaneous rate of change to find $f^{\prime}(0)$, where $f(x)=x^{2}-2 x$. Solution: First we need to find $f^{\prime}(x)$:

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\overbrace{\left[(x+h)^{2}-2(x+h)\right]}^{f(x+h)}-\overbrace{\left(x^{2}-2 x\right)}^{f(x)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[\left(x^{2}+2 x h+h^{2}\right)-2(x+h)\right]-\left(x^{2}-2 x\right)}{h} \quad \text { expand }(x+h)^{2} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+b^{2}-2 x-2 h-x^{2}+2 x}{h} \\
& =\lim _{h \rightarrow 0} \frac{\not h(2 x+h-2)}{\not b} \quad \text { factoring } \\
& =\lim _{h \rightarrow 0}(2 x+b-2) \\
& =2 x+0-2 \text {. }
\end{aligned}
$$

Since $f^{\prime}(x)=2 x-2$, we can find $f^{\prime}(0)=2 \cdot 0-2=-2$.

QUIZ THE THIRD

1. Find the derivative of $\frac{1}{64} x^{8}-\frac{1}{16} x^{4}+2 x+1$.

Solution: Use the properties:

$$
\begin{align*}
\frac{d}{d x}\left(\frac{1}{64} x^{8}-\frac{1}{16} x^{4}+2 x+1\right) & =\left(\frac{d}{d x} \frac{1}{64} x^{8}\right)-\left(\frac{d}{d x} \frac{1}{16} x^{4}\right)+\left(\frac{d}{d x} 2 x\right)+\left(\frac{d}{d x} 1\right) \tag{1}\\
& =\frac{1}{64}\left(\frac{d}{d x} x^{8}\right)-\frac{1}{16}\left(\frac{d}{d x} x^{4}\right)+2\left(\frac{d}{d x} x\right)+\left(\frac{d}{d x} 1\right) \tag{2}\\
& =\frac{1}{64}\left(8 x^{7}\right)-\frac{1}{16}\left(4 x^{3}\right)+2(1)+(0) \\
& =\frac{1}{8} x^{7}+\frac{1}{4} x^{3}+2 .
\end{align*}
$$

We used
(1) the derivative of a sum is the sum of the terms' derivatives;
(2) the derivative of a constant multiple is the constant multiple of the derivative;
(3) the derivative of x^{n} is $n x^{n-1}$; the derivative of x is 1 ; and the derivative of 1 is 0 ;
(4) "obvious" simplifications.
2. If $f(x)=\frac{1}{64} x^{8}-\frac{1}{16} x^{4}+2 x+1$, find $f^{\prime}(2)$.

Solution: We already found the derivative in the first problem, so we need merely substitute $x=2$:

$$
f^{\prime}(2)=\frac{1}{8} \cdot 2^{7}-\frac{1}{4} \cdot 2^{3}+2=16=2+2=16 .
$$

3. A company sells widgets at a total cost of approximately $C(x)=32 x^{3 / 4}$ dollars for x widgets. Find the marginal cost of 10,000 widgets, and interpret your answer.
Solution: Marginal cost is approximately equal to the derivative, so we compute

$$
M C(x)=\frac{d}{d x}\left(32 x^{3 / 4}\right)=32 \frac{d}{d x}\left(x^{3 / 4}\right)=32 \cdot \frac{3}{4} x^{3 / 4-1}=24 x^{-1 / 4}=\frac{24}{x^{1 / 4}} .
$$

When $x=10,000=10^{4}$, we have

$$
M C\left(10^{4}\right)=\frac{24}{\left(10^{4}\right)^{1 / 4}}=\frac{24}{10}=2.4
$$

4. Use the intuitive definition of the derivative to explain why the derivative of the function $f(x)=-3 x$ must be $f^{\prime}(x)=-3$.
(Hint: By "intuitive", I refer to the geometric interpretation of the derivative.)
Solution: The function $f(x)=-3 x$ is a line. For any x, the line tangent to f at x will coincide with f, because the only line tangent to a line is the line itself. The derivative is the slope of the tangent line, hence the slope of f, which is -3 .
5. A company can produce LCD digital alarm clocks at a cost of $C(x)=3 x-1000$ dollars for x clocks.
(a) Find the average cost function, $A C(x)$.

Solution: We find the average by dividing a total by the number of objects involved in computing that total, so $A C(x)=C(x) / x=3 x-1000 / x$. You can simplify this to $A C(x)=$ $3-1000 / x$ or even $A C(x)=3-1000 x^{-1}$, but you don't need to.
(b) Find the marginal average cost function, $M A C(x)$.

Solution: The second formulation makes it easiest to compute the derivative, since

$$
M A C(x)=A C^{\prime}(x)=0-1000\left(-x^{-2}\right)=\frac{1000}{x^{2}}
$$

The first formulation requires the quotient rule:

$$
M A C(x)=A C^{\prime}(x)=\frac{(3-0) \cdot x-(3 x-1000) \cdot 1}{x^{2}}=\frac{3 x-(3 x-1000)}{x^{2}}=\frac{1000}{x^{2}}
$$

(c) Evaluate $M A C(x)$ at $x=350$, rounded to the nearest tenth of a cent.

Solution: MAC (350) $=1000 / x^{2}=0.008$. (When measuring in dollars, "cents" appear in the second decimal place, so "tenths of a cent" appear in the third.)

