MAT 102 TEST "4", SOLUTIONS

I don't ordinarily give a test on Chapter 5; it's rolled into the final exam. This gives you an idea of what sorts of questions I might ask on the exam for Chapter 5 material only.

If you think you find an error, let me know. If you are right, I will give you extra credit.

1. Define the following terms, and/or explain the following theorems.
(a) the definite integral $\int_{a}^{b} f(x) d x$ (geometric and precise definitions)
geometric: the area between $f(x)$ and the x-axis on the interval $[a, b]$.
precise: $\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty}\left[\sum_{i=1}^{n}(f(x) \Delta x)\right]$ where $\Delta x=\frac{b-a}{n}$. I won't require that you write the limits on Σ or the definition of Δx.
(b) the Fundamental Theorem of Calculus (in words and in symbols)
in words: the area between $f(x)$ and the x-axis on the interval $[a, b]$ is $F(b)-F(a)$, where F is any antiderivative of f
in symbols: $\int_{a}^{b} f(x) d x=F(b)-F(a)$, where $F(x)=\int f(x) d x$
2. Find the area between the curves $f(x)=x^{2}+4, g(x)=-2 x$, between $x=0$ and $x=3$. (These curves do not intersect.)
To decide which curve is on top, evalue the y-values at an x-value in the interval:

$$
f(1)=5>-2=g(1),
$$

so f is on top. To find the area, then, we compute

$$
\begin{aligned}
\int_{0}^{3} f(x)-g(x) d x & =\int_{0}^{3}\left(x^{2}+4\right)-(-2 x) d x \\
& =\int_{0}^{3} x^{2}+2 x+4 d x \\
& =\frac{x^{3}}{3}+22 \cdot \frac{x^{2}}{22}+\left.4 x\right|_{0} ^{3} \\
& =\left(\frac{3^{3}}{3}+3^{2}+4 \cdot 3\right)-\left(\frac{0^{3}}{3}+0^{2}+4 \cdot 0\right) \\
& =30
\end{aligned}
$$

3. Compute the following integrals. Part (c) requires substitution.
(a) $\int 6 e^{3 x} d x$

$$
\int 6 e^{3 x} d x=6 \int e^{3 x} d x=\underbrace{6 \cdot \frac{e^{3 x}}{3}+C}_{\text {full credit }}=2 e^{3 x}+C
$$

(b) $\int_{1}^{3} x^{2}-3 d x$

$$
\int_{1}^{3} x^{2}-3 d x \underset{\mathrm{FTC}}{=} \frac{x^{3}}{3}-\left.3 x\right|_{1} ^{3}=\left(\frac{3^{3}}{3}-3 \cdot 3\right)-\left(\frac{1^{3}}{3}-3 \cdot 1\right)=\frac{8}{3} .
$$

(c) $\int \frac{3 e^{3 x}}{\sqrt{e^{3 x}-4}} d x$

As noted, this requires substitution. The best approach is to look at the "inside" of the square root: let $u=e^{3 x}-4$; then $u^{\prime}=e^{3 x} \cdot 3$, and the integral now has the form

$$
\int \frac{3 e^{3 x}}{\sqrt{e^{3 x}-4}} d x=\int \frac{1}{\sqrt{e^{3 x}-4}} \cdot 3 e^{3 x} d x=\int \frac{1}{\sqrt{u}} \cdot u^{\prime} d x \underset{\text { Chain Rule }}{=} \int \frac{1}{\sqrt{u}} d u
$$

This is straightforward:

$$
\int \frac{1}{\sqrt{u}} d u=\int u^{-1 / 2} d u=\frac{u^{1 / 2}}{1 / 2}+C=2 \sqrt{u}+C=2 \sqrt{e^{3 x}-4}+C .
$$

4. In an effort to reduce its inventory, a photography store runs a sale on its least popular compact cameras. The sales rate (cameras sold per day) of the sale is predicted to be $4 / t$, where $t=1$ corresponds to the beginning of the sale, at which time none of the inventory of 45 cameras had been sold.
(a) Find a formula for the total number of cameras sold up to day t.

We are given the sales rate, $4 / t$. A "rate" is a derivative, so the total number $S(t)$ of cameras sold is the antiderivate of the rate:

$$
S(t)=\int \frac{4}{t} d t=4 \int \frac{1}{t} d t=4 \ln t+C .
$$

We are also told that no cameras were sold at time $t=1$, the beginning of the sale. (This should make sense.) That means $S(1)=0$. We use this to find a precise value of C :

$$
\begin{aligned}
0=S(1) & =4 \ln 1+C \\
0 & =4 \cdot 0+C \\
0 & =C .
\end{aligned}
$$

Thus the formula for the total number of cameras sold up to day t is

$$
S(t)=4 \ln t+0
$$

(b) Will the store have sold its inventory of 45 cameras by day $t=29$?

On day 29, the store will have sold

$$
S(29)=4 \ln 29+0 \approx 13 \text { cameras },
$$

so no, the store will not have sold its inventory.
5. Find the average value of $f(x)=\frac{1}{x}$ on the interval from $x=1$ to $x=5$. Round your answer to three decimal places.
Don't confuse average value with average rate of change; I could ask for both! Average value is

$$
\frac{1}{b-a} \cdot \int_{a}^{b} f(x) d x=\frac{1}{5-1} \cdot \int_{1}^{5} \frac{1}{x} d x=\frac{1}{4}\left(\left.\ln x\right|_{1} ^{5}\right)=\frac{1}{4}(\ln 5-\ln 1)=\frac{1}{4}(\ln 5-0) .
$$

Rounded to three decimal places, this is 0.402 .

